Интегрирование рациональных функций

Неопределенный интеграл от рациональной функции всегда можно «взять», т.е. представить в виде элементарных функций.

Рациональной функцией называется отношение двух многочленов.

$\large   \frac{P(x)}{Q(x)}=S+\frac{\tilde{P}(x)}{Q(x)},$

где $latex S$ — «целая часть» (многочлен).

$\normalsize \deg(\tilde{P}(x))<\deg(Q(x))$

Нам понадобиться умение разлагать многочлен на простые множители.

$$Q_{n}(x)=C(x-a_{1})^{\alpha_{1}}(x-a_{2})^{\alpha_{2}}…(x-a_{k})^{\alpha_{k}}(x^{2}+p_{1}x+q_{1})^{\beta_{1}}…(x^{2}+p_{s}x+q_{s})^{\beta_{s}}$$

Если $\normalsize m<n$, то:

$$ \small \frac{P_{m}(x)}{Q_{n}(x)}=\frac{A_{1}^{\alpha_{1}}}{(x-a_{1})^{\alpha_{1}}}+\frac{A_{1}^{(\alpha_{1}-1)}}{(x-a_{1})^{\alpha_{1}-1}}+…+\frac{A_{1}^{(1)}}{(x-a_{1})}+…+\frac{A_{k}^{\alpha_{k}}}{(x-a_{k})^{\alpha_{k}}}+\frac{A_{k}^{(\alpha_{k}-1)}}{(x-a_{k})^{\alpha_{k}-1}}+…$$ $$+\frac{A_{k}^{(1)}}{x-a_{k}}+\frac{B_{1}^{\beta_{1}}x+D_{1}^{\beta_{1}}}{(x^{2}+p_{1}x+q_{1})^{\beta_{1}}}+\frac{B_{1}^{(\beta_{1}-1)}+D_{1}^{(\beta_{1}-1)}}{(x^{2}+p_{1}x+q_{1})^{\beta_{1}-1}}+…$$ $$+\frac{B_{1}^{(1)}x+D_{1}+D_{1}^{(1)}}{(x^{2}+p_{1}x+q_{1})}+…+\frac{B_{s}^{\beta_{s}}x+D_{s}^{(s)}}{(x^{2}+p_{s}x+q_{s})^{\beta_{s}}}+…+\frac{B_{s}^{(1)}x+D_{s}^{(1)}}{(x^{2}+p_{s}x+q_{s})}.$$

Таким образом правильная рациональная дробь представляется в виде суммы простых дробей вида:

$$ \frac{A}{(x-\alpha)^{r}},r  \epsilon   \mathbb{N}    и    \frac{Bx+D}{(x^{2}+px+q)^{k}},k  \epsilon  \mathbb{N}$$

$$r=1:    \int\frac{A}{x-\alpha}dx=A\int\frac{d(x-\alpha)}{x-\alpha}=A\ln\left|x-\alpha\right|+C$$

$$r\neq1:   \int\frac{A}{(x-\alpha)^{r}}dx=A\int(x-\alpha)^{-r}d(x-\alpha)=A\frac{(x-\alpha)^{-r+1}}{-r+1}+C$$

Обозначим $\large I_{k}=\int\frac{Bx+D}{(x^{2}+px+q)^{k}}dx$

$\large x^{2}+px+q=(x+\frac{p}{2})^{2}+(q-\frac{p^{2}}{4})$

$\large p^{2}-4q\frac{p^{2}}{4}$

$\large dx=\sqrt{q-\frac{p^{2}}{4}}=a, x+\frac{p}{2}=t$

$\large I_{k}=\int\frac{B(t-\frac{p}{2})+D}{(t^{2}+a^{2})^{k}}dt=B\int\frac{tdt}{(t^{2}+a^{2})^{k}}+B(-\frac{p}{2})+D\int\frac{dt}{(t^{2}+a^{2})^{k}}$

Пусть $\large I_{k}^{1}=B\int\frac{tdt}{(t^{2}+a^{2})^{k}}$, $\large I_{k}^{2}=\int\frac{dt}{(t^{2}+a^{2})^{k}}$

$\large k>1:$  $\large I_{k}^{1}=\int\frac{tdt}{(t^{2}+a^{2})^{k}}=\frac{1}{2}\int(t^{2+a^{2}})^{-k}d(t^{2}+a^{2})=$

$\large =\frac{1}{2}\frac{(t^{2}+a^{2})^{-k+1}}{-k+1}+C=\frac{1}{2(-k+1)(x^{2}+px+q)^{k-1}}+C$

$\large k=1:$  $\large I_{1}^{1}=\int\frac{tdt}{t^{2}+a^{2}}=\frac{1}{2}\int\frac{d(t^{2}+a^{2})}{t^{2}+a^{2}}=\frac{1}{2}\ln\left|t^{2}+a^{2}\right|+C$

В случае $\large k>1$ интеграл «берем» по рекурентной формуле, доказанной выше.

$\large k=1:$  $\large I_{1}^{2}=\int\frac{dt}{t^{2}+a^{2}}=\frac{1}{a}\arctan(\frac{t}{a})+C=\frac{1}{a}\arctan(\frac{x+\frac{p}{2}}{a})+C$

Пример 1

Вычислить интеграл $\large \int\frac{2x+3}{x^{2}-9}dx.$

Решение

Спойлер

Разложим подынтегральное выражение на простейшие дроби:

$\large \frac{2x+3}{x^{2}-9}=\frac{2x+3}{(x-3)(x+3)}=\frac{A}{x-3}+\frac{B}{x+3}.$

Сгруппируем слагаемые и приравняем коэффициенты при членах с одинаковыми степенями:

$\large A(x+3)+B(x-3)=2x+3$

$\large Ax+3A+Bx-3B=2x+3$

$\large (A+B)x+3A-3B=2x+3$

Следовательно,

$\large \begin{cases}A+B=2 \\ 3A-3B=3 \end{cases}, \begin{cases}A=\frac{3}{2} \\ B=\frac{1}{2} \end{cases}.$

Тогда

$\Large \frac{2x+3}{x^{2}-9}=\frac{\frac{3}{2}}{x-3}+\frac{\frac{1}{2}}{x+3}.$

Теперь легко вычислить исходный интеграл

$\large \int\frac{2x+3}{x^{2}-9}dx=\frac{3}{2}\int\frac{dx}{x-3}+\frac{1}{2}\int\frac{dx}{x+3}=\frac{3}{2}\ln\left|x-3\right|+\frac{1}{2}\ln\left|x+3\right|+C=$

$\large =\frac{1}{2}\ln\left|(x-3)^{3}(x+3)\right|+C.$

[свернуть]

Пример 2

Вычислить интеграл $\large \int\frac{x^{2}-2}{x+1}dx$

Решение

Спойлер

Сначала выделим правильную рациональную дробь, разделив числитель на знаменатель.

$\large \frac{x^{2}-2}{x+1}=x-1-\frac{1}{x+1}$

Получаем

$\large \int\frac{x^{2}-2}{x+1}dx=\int(x-1-\frac{1}{x+1})dx=\int xdx-\int dx-\int\frac{dx}{x+1}=$

$ \large =\frac{x^{2}}{2}-x-\ln\left|x+1\right|+C.$

[свернуть]

Литература:

  • Г.М. Фихтенгольц, Курс дифференциального и интегрально исчисления,Том 2, „Наука“, Москва 1970, стр. 36.
  • Лысенко З.М. Конспект лекций по математическому анализу, семестр 1, О.:2012.
  • Интегрирование рациональных фунций http://www.math24.ru/

    Интегрирование рациональных функций

    Интегрирование рациональных функций

    Таблица лучших: Интегрирование рациональных функций

    максимум из 6 баллов
    Место Имя Записано Баллы Результат
    Таблица загружается
    Нет данных

Интегрирование рациональных функций: 2 комментария

  1. Ссылка в никуда. Ссылаются обычно на страницу с названием (и автором) а не пишут URL, тем более, не ведущий к странице.
    Учебники и страницы в них не указаны. Помните, что без этого работу не приму?
    Термины не выделены.
    Тестов нет.

Добавить комментарий для Igor Mazurok Отменить ответ

Ваш адрес email не будет опубликован. Обязательные поля помечены *