Утверждение 1

Рассмотрим многочлен степени [latex]n[/latex], т. е. функцию вида

[latex]P_{n}(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+…+a_{1}x+a_{0},\ \ a_{n}\neq0.[/latex]

Эта функция непрерывна на [latex]R.[/latex]

Спойлер

Функция [latex]y=C,[/latex] где [latex]C[/latex] — постоянно непрерывна на [latex]R,[/latex] так как [latex]\Delta y=0[/latex]при любом[latex]x.[/latex] Функция [latex]y=x[/latex]непрерывна на [latex]R,[/latex] так как [latex]\Delta y=\Delta x \to 0[/latex]при[latex]\Delta x \to 0.[/latex] Поэтому функция[latex]y=a_{k}x^k,[/latex] где [latex]k\in\mathbb{N},[/latex] непрерывна на [latex]R[/latex] как произведение непрерывных функций. Так как многочлен [latex]P_{n}(x)[/latex]есть сумма непрерывных функций вида [latex]a_{k}x^k\ \ \ \left ( k=\overline{0,n} \right ),[/latex] то он непрерывен на[latex]R.[/latex]

[свернуть]

Рациональная функция, т. е. функция вида [latex]f(x)=\frac{P_{n}(x)}{Q_{m}(x)},[/latex] где [latex]P_{n}(x),Q_{m}(x)[/latex] — многочлены степени [latex]n[/latex] и [latex]m[/latex] соответственно, непрерывна во всех точках, которые не являются нулями многочлена [latex]Q_{m}(x).[/latex]

Спойлер

В самом деле, если [latex]Q_{m}(x)\neq 0,[/latex] то из непрерывности многочленов [latex]P_{n}[/latex] и [latex]Q_{m}[/latex] следует непрерывность функции [latex]f[/latex] в точке [latex]x_{0}.[/latex]

[свернуть]

Утверждение 2

Если [latex] x \in \left ( — \frac{\pi}{2} , \frac{\pi}{2} \right ) [/latex] и [latex] x\neq 0,[/latex] то [latex] \cos{x} <\frac{\sin\ x}{x} < 1 \ \ \ \ \left ( 1 \right ).[/latex]

Спойлер

Рассмотрим в координатной плоскости круг единичного радиуса
с центром в точке [latex] O [/latex] (рис. 12.1). Пусть [latex] \angle AOB=x,[/latex] где [latex]0<x<\frac{\pi}{2} [/latex].

121

Пусть [latex] C [/latex]  — проекция точки [latex] B[/latex] на ось [latex]Ox[/latex], [latex] D [/latex] луча [latex] OB [/latex] и прямой, проведенной через точку [latex] A [/latex] перпендикулярно оси [latex] Ox.[/latex] Тогда  [latex]BC=sin x, DA=tgx.[/latex]

Пусть [latex]S_{1}, S_{2}, S_{3}[/latex] — площади треугольника [latex]AOB,[/latex] сектора[latex]AOB[/latex] и треугольника [latex]AOD[/latex] соответственно. Тогда

[latex]S_{1}=\frac{1}{2}(OA)^{2}\sin x=\frac{1}{2}\sin x,[/latex]

[latex]S_{2}=\frac{1}{2}(OA)^{2} x=\frac{1}{2}x,[/latex]

[latex]S_{3}=\frac{1}{2}OA \cdot DA=\frac{1}{2} tg \ x.[/latex]

Так как [latex]S_{1}<S_{2}<S_{3},[/latex] то [latex]\frac{1}{2}\sin x<\frac{1}{2}x<\frac{1}{2} tg \ x \ \ \ \ \left ( 2 \right )[/latex]

Если [latex]x \in \left ( 0 , \frac{\pi}{2} \right )[/latex]  то [latex]\sin{x}>0,[/latex] и поэтому неравенство[latex]\left ( 2 \right )[/latex] равносильно неравенству

[latex]1<\frac{x}{\sin{x}}<\frac{1}{\cos{x}}[/latex]

откуда следует, что при  [latex]x \in \left ( 0 , \frac{\pi}{2} \right )[/latex] выполняется неравенство [latex]\left ( 1 \right ).[/latex] Так
как [latex]\frac{x}{\sin{x}}[/latex] и [latex]\cos{x}[/latex] — четные функции, то неравенство  [latex]\left ( 1 \right )[/latex] справедливо и при[latex]x \in \left (-\frac{\pi}{2},0 \right ).[/latex]

[свернуть]

 Следствие

Первый замечательный предел

[latex] \lim_{x \to 0}\frac{\sin\ x}{x}=1[/latex]

Подробнее

 Замечание

Из неравенства[latex]\left(2\right )[/latex]следует, что [latex]tg\ x>x[/latex] при [latex]x \in \left ( 0 , \frac{\pi}{2} \right )\ \ \ \ \ \ \left (3 \right ).[/latex]

Утверждение 3

Для всех [latex]x\in\mathbb{R}[/latex]справедливо неравенство

[latex]\left |\sin{x} \right |\leqslant \left | x \right |\ \ \ \ \ \ \left (4 \right ).[/latex]

Спойлер

Неравенство  [latex]\left ( 4 \right )[/latex]  выполняется при  [latex]x=0.[/latex]

Пусть [latex]x\neq0.[/latex]

Если  [latex]\left | x \right |<\frac{\pi}{2},[/latex] то из утверждения  [latex]\left (1\right )[/latex] следует что

 [latex]-1<\cos{x} <\frac{\sin\ x}{x} < 1\ \ \ \Rightarrow[/latex]

[latex]\left |\frac{\sin{x}}{x} \right |<1 \ \ \Rightarrow\left | \sin{x} \right |<\left | x \right |[/latex]

Если  [latex]\left | x \right |\geqslant\frac{\pi}{2},[/latex] то тогда доказываемое неравенство очевидно.

[свернуть]

Утверждение 4

Функции [latex]y=\sin{x}[/latex] и [latex]y=\cos{x}[/latex] непрерывны на всем множестве [latex]\mathbb{R}.[/latex]

Спойлер

Требуется доказать, что

[latex]\forall x \in \mathbb{R} : \lim_{x \to x_{0}}\sin{x}=\sin{x_{0}},[/latex]

а именно

[latex]\forall \varepsilon >0\ \ \ \ \exists \delta_{\varepsilon }:\forall x:\left | x-x_{0} \right |<\delta \Rightarrow \left | \sin{x}-\sin{x_{0}} \right |<\varepsilon [/latex]

[latex]\left | \sin{x}-\sin{x_{0}} \right |=\left | 2-\sin{\frac{x-x_{0}}{2}}\cos{\frac{x+x_{0}}{2}} \right | =2\left |\sin{\frac{x-x_{0}}{2}} \right |\left |\cos{\frac{x+x_{0}}{2}} \right |\leqslant[/latex]

[latex]\leqslant 2\left |\sin{\frac{x-x_{0}}{2}} \right |\leqslant 2\left |\frac{x-x_{0}}{2} \right |=\left | x-x_{0} \right |<\delta \leqslant \varepsilon[/latex]

То есть [latex]\forall \varepsilon >0[/latex]если взять[latex]\delta = \frac{\varepsilon }{2}[/latex], то[latex]\forall x:\left | x-x_{0} \right |<\delta \Rightarrow \left | \sin{x}-\sin{x_{0}} \right |<\varepsilon[/latex]

Для функции [latex]\cos{x}[/latex] доказывается аналогично

 

[свернуть]

Следствие

Функция [latex]tg\ x=\frac{\sin{x}}{\cos{x}}[/latex] — непрерывная при [latex]x\neq \frac{\pi}{2}+\pi k, k \in \mathbb{Z}[/latex]

Утверждение 5

Рассмотрим несколько  функции с их графиками

  1. [latex]y=\sin{x}\ ;\ \ x\in\left[-\frac{\pi}{2};\frac{\pi}{2}\right][/latex]строго возрастает и непрерывна
    Спойлер

    sin x2

    [свернуть]
  2. [latex]y=\cos{x}\ ;\ \ x\in\left[0;\pi\right][/latex]строго спадает и непрерывна
    Спойлер


    cos x

    [свернуть]
  3. [latex]y=tg \ x\ ;\ \ x\in\left(-\frac{\pi}{2};\frac{\pi}{2}\right)[/latex]строго возрастает и непрерывна
    Спойлер


    tg x

    [свернуть]
  4. [latex]y=ctg \ x\ ;\ \ x\in\left(0;\pi\right)[/latex]строго спадает и непрерывна
    Спойлер


    ctg x

    [свернуть]

 

Тогда по теореме существуют обратные  непрерывные монотонные функции соответственно

  1. [latex]y=\arcsin{x}\ ;\ \ x\in\left[-1;1\right][/latex]
    Спойлер


    arcsin x

    [свернуть]
  2. [latex]y=\arccos{x}\ ;\ \ x\in\left[-1;1\right][/latex]
    Спойлер


    arccos x

    [свернуть]
  3. [latex]y=arctg\ x\ ;\ \ x\in\mathbb{R}[/latex]
    Спойлер


    arctg x

    [свернуть]
  4. [latex]y=arcctg\ x\ ;\ \ x\in\mathbb{R}[/latex]
    Спойлер


    arcctg x

    [свернуть]

 Утверждение 6

Функция [latex]y=a^x,\ \ a>0, \ \ a\neq 1[/latex] — монотонна непрерывна на [latex]\mathbb{R},[/latex] то есть

[latex]\forall x\in\mathbb{R}\ \ \ \lim_{x\to x_{0}}a^x=a^{x_{0}}[/latex]

и тогда функция [latex]y=\log_{a}{x}[/latex] — монотонна и непрерывна(как обратная)

Утверждение 7

Функции, заданные формулами

[latex]sh\ x =\frac{e^x-e^{-x}}{2},\ \ \ \ ch\ x=\frac{e^x+e^{-x}}{2}[/latex]

называют соответственно гиперболическим синусом и гиперболическим косинусом.

Эти функции определены и непрерывны на [latex]\mathbb{R}[/latex], причем [latex]sh\ x[/latex]— нечетная функция, а [latex]ch\ x[/latex] — четная функция.

Спойлер


hiper

[свернуть]

Из определения функций  [latex]sh\ x[/latex] и [latex]ch\ x[/latex] следует, что

[latex]sh\ x +ch\ x=e^x\ ,\ \ \ \ ch^{2}\ x-sh^{2}\ x=1\ ,[/latex]

[latex] ch\ 2x=1+2sh^{2}\ x\ ,\ \ sh\ 2x=2sh\ x\ ch\ x[/latex]

 По аналогии с тригонометрическими функциями гиперболические тангенс и котангенс определяются соответственно формулами

[latex]th\ x=\frac{sh\ x}{ch\ x}\ ,\ \ \ cth\ x=\frac{ch\ x}{sh\ x} [/latex]

Функция [latex]th\ x[/latex] определена и непрерывна на [latex]\mathbb{R},[/latex] а функция [latex]cth\ x[/latex] определена и непрерывна на множестве [latex]\mathbb{R}[/latex] с выколотой точкой [latex]x= 0.[/latex] Обе функции нечетные.

Спойлер

thcht

[свернуть]

Утверждение 8

Пусть функции [latex]u(x)[/latex]  и [latex]v(x)[/latex] определены на промежутке[latex]\Delta =\left ( a,b \right ),[/latex] причем для всех[latex]x \in \Delta[/latex] выполняется условие [latex]u(x)>0,[/latex] Тогда функцию  [latex]y,[/latex] определяемую формулой

[latex]y=e^{v(x)\ln{u(x)}}[/latex]

будем называть показательно-степенной и обозначать 

[latex]y=u(x)^{v(x)}[/latex]

Таким образом, исходя из определения

[latex]u(x)^{v(x)}=e^{v(x)\ln{u(x)}}[/latex]

Если [latex]u,v[/latex] — функции, непрерывные на [latex]\Delta,[/latex] то функция [latex]u^v[/latex] непрерывна на [latex]\Delta[/latex] как суперпозиция непрерывных функций  [latex]e^t[/latex] и [latex]t = v(x)\ln{u(x)}[/latex].

Тест

Непрерывность элементарных функций

Источники

Тер-Крикоров A.M., Шабунин М.И. Курс математического анализа: Учеб. пособие для вузов.  3-е изд., исправл. — М.: ФИЗМАТ-ЛИТ, 2001. (стр. 96-110)

В. И. Коляда, А. А. Кореновский. Курс лекций по математическому анализу. К93:в 2-х ч. Ч. 1. — Одесса: Астропринт, 2009. (стр. 90-96)

Непрерывность элементарных функций: 3 комментария

  1. Стоит заметить, что, как мне кажется, в доказательстве утверждения под номером 4 совершен неэквивалентный переход, а именно разность синусов |sin(x)-sin(x’)| во второй строчке каким-то чудом преобразовалась в 2*|sin[(x-x’)/2]*cos[(x-x’)/2]| тогда как, несомненно, разность синусов должна быть равна 2*|sin[(x-x’)/2]*cos[(x+x’)/2]| (там сумма аргументов у косинуса, у вас же разница).

    Впрочем, на верность решения это не повлияло, тк все равно этот косинус меньше либо равен 1.

Добавить комментарий для Влад Отменить ответ

Ваш адрес email не будет опубликован. Обязательные поля помечены *