Определение предела по Коши и по Гейне, их эквивалентность

1. Определение предела по Коши и по Гейне

Определение 1.1. (определение по Коши или на языке [latex]\varepsilon — \delta[/latex]):

[latex]A[/latex] — предел функции [latex]f(x)[/latex] в точке [latex]a[/latex] (и пишут \(\lim\limits_{x\rightarrow a } f(x) = A\)), если: [latex]\forall \varepsilon > 0 \exists \delta > 0:\forall x: 0 < |x-a| < \delta \Rightarrow |f(x) — A| < \varepsilon[/latex]
В определении допускается, что [latex]x \neq a[/latex], то есть [latex]a[/latex] может не принадлежать области определения функции.

Определение 1.2. (определение по Гейне):

[latex]A[/latex] называется пределом функции [latex]f(x)[/latex] в точке [latex]a[/latex], если [latex]\forall \left \{ x_{n} \right \}\rightarrow a[/latex], [latex]x_n\ne a[/latex] то есть [latex]\lim\limits_{n\rightarrow \infty } x_{n} = a[/latex], соответствующая последовательность значений [latex]{f(x_{n})} \rightarrow A[/latex], то есть [latex]\lim\limits_{n\rightarrow \infty } f(x_{n}) = A[/latex].

Замечание 1.1.

Из определения предела функции по Гейне следует, что функция не может иметь в точке два разные предела.

Замечание 1.2.

Понятие предела функции в точке есть локальное понятие: существование и значение предела полностью определяется значениями функции в как угодно малой окрестности этой точки.

Замечание 1.3.

[latex]\forall x:0<|x-a|<\delta[/latex]

Данную запись в определении можно сформулировать иначе: точка [latex]x[/latex] принадлежит проколотой [latex]\delta[/latex]-окрестности точки [latex]a[/latex]([latex]x\in \dot{U_{\delta }}(a)[/latex])

2. Эквивалентность определений

Пусть число [latex]A[/latex] является пределом функции [latex]f(x)[/latex] в точке [latex]a[/latex] по Коши. Выберем произвольную подходящую последовательность [latex]x_{n}[/latex] , [latex]n \in N[/latex], то есть такую, для которой [latex]\lim\limits_{n\rightarrow \infty } x_{n} = a[/latex]. Покажем, что [latex]A[/latex] является пределом по Гейне.

Зададим произвольное [latex]\varepsilon > 0[/latex] и укажем для него такое [latex]\delta > 0[/latex], что для всех [latex]x[/latex] из условия [latex]0 < |x-a| < \delta[/latex] следует неравенство [latex]|f(x)-A | < \varepsilon[/latex]. В силу того, что [latex]\lim\limits_{n\rightarrow \infty } x_{n} = a[/latex], для [latex]\delta > 0[/latex] найдётся такой номер [latex]n_{\delta }\in N[/latex], что [latex]\forall n\geq n_{\delta }[/latex] будет выполняться неравенство [latex]|f(x_{n})-A| < \varepsilon[/latex], то есть [latex]\lim\limits_{n\rightarrow \infty } f(x_{n}) = A[/latex].

Докажем теперь обратное утверждение: предположим, что [latex]\lim\limits_{x\rightarrow a } f(x) = A[/latex] по Гейне, и покажем, что число [latex]A[/latex] является пределом функции [latex]f(x)[/latex] в точке [latex]a[/latex] по Коши. Предположим, что это неверно, то есть: [latex]\exists \varepsilon_{0} > 0 \forall \delta > 0 :\exists x_{\delta }:0<|x_{\delta }-a|<\delta \Rightarrow |f(x_{\delta })-A|\geq \varepsilon[/latex]. В качестве [latex]\delta[/latex] рассмотрим [latex]\delta = \frac{1}{n}[/latex], а соответствующие значения [latex]x_{\delta }[/latex] будем обозначать [latex]x_{n}[/latex]. Тогда при любом [latex]n\in N[/latex] выполняются условия [latex]|x_{n}-a|<\frac{1}{n}[/latex] и [latex]|f(x_{n})- A | \geq \varepsilon[/latex]. Отсюда следует, что последовательность x_{n} является подходящей, но число [latex]A[/latex] не является пределом функции [latex]f(x)[/latex] в точке [latex]a[/latex]. Получили противоречие.

3. Примеры

Пример 3.1.

а) [latex]\lim\limits_{x\rightarrow 2 } x^{2} = 4[/latex]

[latex]\forall \varepsilon >0\exists \delta >0:\forall x:0<|x-2|<\delta \Rightarrow |x^{2}-4|<\varepsilon[/latex][latex]|x^{2}-4|=|(x-2)(x+2)|=|x-2|\cdot|x+2|<5\delta <\varepsilon \Rightarrow 0<\delta <\frac{\varepsilon }{5}[/latex] , например [latex]\delta =\frac{\varepsilon }{6}[/latex]

б) [latex]\forall\left \{ x_{n} \right \}\rightarrow 2[/latex]                                                                                 [latex]\lim\limits_{n\rightarrow 2 } f(x_{n}) =\lim\limits_{n\rightarrow 2} x_{n}^{2}=4[/latex]

Пример 3.2.

Доказать, что [latex]f(x)=\sin \frac{1}{x}[/latex] не имеет предела в точке 0.

[latex]\exists \left \{ {x_{n}}’ \right \}\rightarrow 0[/latex] [latex]\exists \left \{ {x_{n}}» \right \}\rightarrow 0[/latex]

[latex]\left \{ f({x_{n}}’) \right \}\rightarrow A_{1}[/latex] [latex]\left \{ f({x_{n}}») \right \}\rightarrow A_{2}[/latex]

[latex]{x_{n}}’:\sin \frac{1}{{x_{n}}’}=0\Leftrightarrow \frac{1}{{x_{n}}’}=\pi n\Rightarrow {x_{n}}’ = \frac{1}{\pi n}\xrightarrow[ n\neq 0]{n\rightarrow \infty}0[/latex]                                                            [latex]{x_{n}}’= \frac{1}{\pi n} \rightarrow 0:f({x_{n}}’)=0\rightarrow 0[/latex]                                                                                                [latex]{x_{n}}»:\sin \frac{1}{{x_{n}}»}=1\Leftrightarrow \frac{1}{{x_{n}}»}=\frac{\pi }{2}+2\pi n\Rightarrow {x_{n}}» = \frac{1}{\frac{\pi }{2}+2\pi n}\xrightarrow[n\neq 0]{n\rightarrow \infty }0[/latex]                  [latex]{x_{n}}»= \frac{1}{\frac{\pi }{2}+2\pi n} \rightarrow 0:f({x_{n}}»)=1\rightarrow 1[/latex]

Вывод: последовательность по Гейне не имеет предела.

Литература

 Тест

Тест по теме Определение предела по Коши и по Гейне, их эквивалентность.

Желаем удачи!

Таблица лучших: Предел последовательности

максимум из 10 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных
 

 

Определение предела по Коши и по Гейне, их эквивалентность: 2 комментария

  1. В доказательстве обратного неверна 3-я строчка. Отрицание импликации — это конъюнкция а не импликация:
    ¬(A=>B) = A /\ ¬B

    1. Доказывается невозможность одновременно быть пределом Гейне и не быть пределом по Коши. Если я правильно понял о каком месте Вы пишите.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *