M1384. Невырожденность и выпуклость четырехугольников, связанных с центрами вписанного, описанного кругов и ортоцентром треугольника

Условие

ABC — неравнобедренный остроугольный треугольник; O и I — центры описанного и вписанного кругов, H — ортоцентр треугольника. Докажите, что четырехугольники AOIH, BOIH и COIH невырождены и среди них ровно два выпуклых.

Доказательство

Решению предпошлем легко доказываемое предположение:

В треугольнике биссектриса делит пополам угол между высотой и радиусом описанного круга, проведенным в ту же вершину.

Рис. 1 к задаче M1384

Докажем это предположение. Пусть BM — биссектриса угла ABC (рис. 1). Так как OB=OM, то \angle OBM=\angle OMB. Так как точка M — середина дуги AMC, то прямые OM и BD параллельны. Следовательно, \angle DMB=\angle BMO, отсюда \angle OBM=\angle DBM, что и требовалось доказать.

Решение задачи. Покажем вначале, что точки O и H не могут лежать на одной прямой с какой-либо из вершин треугольника (в частности, эти точки не могут совпадать). Действительно, в этом случае выходящие из вершины медиана и высота совпадают, и треугольник оказывается равнобедренным. Отсюда и из леммы уже следует, что AOIH, BOIH и COIH — невырожденные многоугольники (четырехугольники либо треугольники).

Рис. 2 к задаче M1384

Пусть прямая OH пересекает стороны AB и BC треугольника, BC> AB. Для завершения решения достаточно доказать, что точка I лежит внутри той же полуплоскости с границей OH, что и точка B (рис.2). Докажем это.

Обозначим BD=h_{s}. Имеем: CD>AD. Восстановим перпендикуляр к середине отрезка AC, получаем: точка O принадлежит треугольнику BCD. Обозначим через E(K) точку пересечения прямой AI(CI) с прямой OH. Необходимо доказать, что точки на прямой расположены в следующем порядке: O,K,E,H, т.е что \frac{OK}{KH}< \frac{OE}{EH}.[/latex] Но биссектриса угла треугольника делит противоположную сторону на части, пропорциональные прилежащим сторонам. Отсюда и из леммы получаем: [latex]\frac{OK}{KH}=\frac{CO}{CH}, \frac{OE}{EH}=\frac{AO}{AH}.[/latex] Доказываемое утверждение можно теперь переписать так: [latex]\frac{AH}{AO}< \frac{CH}{CO}[/latex] или [latex]CH>AH. Но поскольку CD>AD, то CH>AH. Отсюда и следует утверждение задачи.

Замечания:

  • Нетрудно показать, что прямая OH пересекает большую и меньшую стороны треугольника ABC. Значит, выпуклыми являются четырехугольники, соответствующие большему и меньшему его углам.
  • Задача допускает также и алгебраическое решение.

В.Сендеров

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *