Извлечение корней. Первообразные корни из единицы



Допустим число $\alpha$  задано в тригонометрической форме,то при целом положительном $n$ из формулы $\alpha = r\left ( \cos\varphi + i \sin\varphi \right )$ следует формула
$\left [ r\left ( \cos\varphi + i\sin n\varphi \right ) \right ]^n = r^n\left ( \cos n\varphi + i \sin n\varphi \right ) $, то есть при возведении комплексного числа в степень модуль тоже возводится в эту степень , а аргумент умножается на показатель степени.

Намного больше трудностей представляет собой извлечение корня из комплексного числа. Начнём с извлечения квадратного корня из числа $\alpha = a + bi$. Можем записать, что $\sqrt{a + bi} = u + vi$. Из этих двух равенств мы получаем:

$ u^2 = \frac{1}{2}\left ( a + \sqrt{a^2 +b^2} \right )$, $v^2 = \frac{1}{2}\left ( -a + \sqrt{a^2 +b^2} \right )$.

Пример

... показать

Попытки извлечения из комплексных чисел, заданных в виде $a+bi$ ,корней более высокой степени, чем вторая, более трудоёмкие.

Теперь нужно извлечь корень $n$ -й степени из числа $\alpha = r (\cos\varphi + i\sin\varphi )$. Предположим, что это можно сделать. А в результате получим число $p(\cos\sigma + i\sin\sigma)$, то есть
$ \left [ p\left ( \cos\sigma + i \sin\sigma \right ) \right ]^n = r(\cos\varphi + i\sin\varphi) .$
Используя формулу Муавра, $p =\sqrt[n]{r}$ и $\sigma = \frac{\varphi + 2k \pi }{n} $.

$\sqrt[n]{r(\cos\varphi + i\sin\varphi )} = \sqrt[n]{r}(\cos\frac{\varphi + 2k\pi }{n} + i \sin\frac{\varphi + 2k\pi }{n}).$

Извлечение корня $n$ степени из комплексного числа $\alpha$ всегда возможно и дает $n$ различных значений. Все значения корня $n$ степени разложены на окружности радиуса $\sqrt[n]{\left | \alpha \right |}$ с центром в нуле и деля эту окружность на $n$ равных частей.

Пример

... показать

Изобразим наше решение примера графически:

Корни из единицы
Важен случай извлечения корня $n$-й степени из числа 1. Все корни $n$-й степени даются формулой:

$\sqrt[n]{1} = \cos\frac{2k\pi }{n}+ i\sin\frac{2k\pi }{n}; k = 0,1…,n-1.$

Умножением одного из значений корня на все корни $n$-й степени из единицы можно получить все значения корня $n$-й степени из комплексного числа $\alpha$.
Корень $n$-й степени из единицы $ \varepsilon $ будет первообразным $\Leftrightarrow$ если его степени $\varepsilon^{k}, k = 0,1,…,n-1,$ различны ,то есть если ими исчерпываются все корни $n$-й степени из единицы.
Если $ \varepsilon $ есть первообразный корень $n$-й степени из единицы, то число $\varepsilon^{k}$ будет первообразным корнем $n$-й степени $\Leftrightarrow$, когда ${k}$ взаимно просто с ${n}$. Числа называются взаимно простыми если они не имеют никаких общих делителей кроме 1 и -1.
Пример

... показать

Литература

извлечение корней

извлечение корней


Таблица лучших: извлечение корней

максимум из 22 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *