Признак сравнения несобственных интегралов

Признак сравнения в форме неравенств

Теорема

Пусть функции $f$ и $g$ неотрицательны на $[a,b)$ и интегрируемы на каждом отрезке, содержащемся в $[a,b)$. Предположим, что $f(x)\leq g(x)$ для любого $x\in [a,b)$. Тогда:

  1. из сходимости интеграла $I_{2}=\int_{a}^{b}{g(x)dx}$ следует сходимость интеграла $I_{1}=\int_{a}^{b}{f(x)dx}$;
  2. из расходимости интеграла $I_{1}=\int_{a}^{b}{f(x)dx}$ следует расходимость интеграла $I_{2}=\int_{a}^{b}{g(x)dx}$;
Доказательство показать

Пример показать

Признак сравнения в предельной форме

Теорема

Пусть функции $f(x) $ и $g(x) $ неотрицательны на $[a,b)$ и интегрируемы на каждом отрезке, содержащемся в $[a,b)$. Тогда, если для $\forall x \in [a,b)$ выполняются условие $f(x)\sim g(x)$ при $x\rightarrow b-0$  $(\lim_{x \rightarrow b-0}\frac{f(x)}{g(x)}=1)$. Тогда интегралы $I_{1}=\int_{a}^{b}{f(x)dx}$ и $I_{2}=\int_{a}^{b}{g(x)dx}$ сходятся или расходятся одновременно (ведут себя одинаково).

Доказательство показать

Замечание

Если функция $f(x)$ интегрируема на отрезке $[a,\xi]$ при $\forall \xi \geq \alpha$ и если $f(x)\sim \frac{A}{x^{\alpha}}$ при $x\rightarrow +\infty$, где $A\neq 0$, то интеграл $\int_{\alpha }^{+\infty}{f(x)dx}$ сходится при $\alpha >1$ и расходится при  $\alpha \leq 1$.

Пример показать

Тест по теме: Признак сравнения несобственных интегралов

Этот тест покажет ваши знания по данной теме.

Таблица лучших: Тест по теме: Признак сравнения несобственных интегралов

максимум из 15 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *