Теоремы Вейерштрасса о непрерывных функциях на компактных множествах

Первая теорема Вейерштрасса

Пусть K — компакт в \mathbb{R}^{n} и функция f: K\rightarrow \mathbb{R}^{m} непрерывна на K. Тогда эта функция ограничена на K.

Доказательство

В силу непрерывности f, для любого x\in K найдётся окрестность U_{x}, такая что функция f ограничена на множестве U_{x}, то есть для каждого y\in K \cap U_{x} справедливо неравенство \begin{Vmatrix} f(y) \end{Vmatrix}\leq M_{x}, где M_{x} зависит от x. Совокупность открытых шаров U_{x} образует открытое покрытие компактного множества K. В силу компактности, из него можно выделить конечное подпокрытие U_{x_{1}}, ..., U_{x_{p}}. Этим шарам соответствуют числа M_{x_{1}}, ..., M_{x_{p}}. На каждом и этих шаров функция f ограничена этим числом. Пускай M=\max_{1\leq i\leq p}M_{x_{i}}. Тогда для любого x\in K получим, что \begin{Vmatrix} f(x) \end{Vmatrix}\leq M.

Пусть функция f: \mathbb{R}\rightarrow \mathbb{R} непрерывна на \left[a, b \right]. По первой теореме Вейерштрасса эта функция ограничена на \left[a, b \right].

Vey1

Вторая теорема Вейерштрасса

Пусть f: K\rightarrow \mathbb{R} — действительная непрерывная функция на компакте K\subset \mathbb{R}^{n}. Тогда на этом множестве функция f достигает своей верхней и нижней границы, то есть существуют такие x^{'}, x^{''}\in K, что

f(x^{'})=\sup_{x\in E}f\left(x \right), f(x^{''})=\inf_{x\in E}f\left(x \right).

Доказательство

Пусть f: E\rightarrow \mathbb{R}, где E\subset \mathbb{R}^{n}. Функция f называется ограниченной сверху на множестве E, если существует такая постоянная M, то для всех x\in E справедливо неравенство \begin{Vmatrix} f(x) \end{Vmatrix}\leq M. Каждое такое число M называется верхней границей функции f, а наименьшая из всех верхних границ называется точной верхней границей или верхней гранью функции f и обозначается \sup_{x\in E}f\left(x \right).

Пойдём от противного. Допустим, верхняя грань не достигается, то есть для каждого x\in K справедливо неравенство f(x)<M, где M — верхняя грань функции f на K.

Рассмотрим функцию \varphi (x)=\frac{1}{M-f(x)}. Эта функция положительна и непрерывна в каждой точке x\in K. По ранее доказанной первой теореме Вейерштрасса она ограничена, то есть существует такое число \mu >0, что \varphi (x)\leq \mu для любого x\in K. Это означает, что \frac{1}{M-f(x)}\leq \mu, или, что то же самое, f(x)\leq M-\frac{1}{\mu}(x\in K). Следовательно, число M-\frac{1}{\mu} является верхней границей для функции f. Но так как \mu >0, то это противоречит тому, что M является верхней гранью функции f, то есть наименьшей из всех верхних границ.

Аналогично теорема доказывается и для нижней грани.

Пусть функция f: \mathbb{R}\rightarrow \mathbb{R} непрерывна на \left[a, b \right]. Тогда на этом множестве функция f достигает своей верхней и нижней граней M=f(x^{''})=\sup_{x\in E}f\left(x \right), m=f(x^{'})=\inf_{x\in E}f\left(x \right).

Vey2

Пример

Пусть f(x,y)=x^{5}+y^{4}+2x^{3}y^{2}+1. Будет ли f ограничена на \left[5, 7 \right]\times\left[8,9 \right]?

Ответ показать

Тест на знание теорем Вейерштрасса о непрерывных функциях на компакте

Тест поможет понять, как хорошо вы усвоили приведённый выше материал.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *