Достаточные условия экстремума функции двух переменных

Дифференциальное исчисление функций многих переменных — важный раздел анализа, имеющий немало приложений в физике, инженерии и прикладной математике. Существенное количество практических задач формулируется в терминах функций от двух переменных — явном выражении поверхностей в пространстве \mathbb{R}^{3}. В классических курсах анализа их изучают с более общих позиций, рассматривая достаточные критерии экстремума функций вида f: \mathbb{R}^{n} \rightarrow \mathbb{R} (также называемых скалярными полями), в терминах которых ведётся дальнейшее изложение.


Определение

Говорят, что функция f: \mathbb{E} \subset \mathbb{R}^{m} \rightarrow \mathbb{R} имеет во внутренней точке x_{0}

  • локальный минимум, если \exists U(x_{0}) \subset \mathbb{E}: \forall f(x) \le f(x_{0}).
  • локальный максимум, если \exists U(x_{0}) \subset \mathbb{E}: \forall f(x) \ge f(x_{0}).

Заменой неравенств на строгие получаем условия соответственно строгого локального минимума и максимума.


Определение

Якобианом векторного поля f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}, \forall x \in \mathbb{R}^{m} f(x) = (f_{1}(x),...,f_{m}(x)), дифференцируемого в точке x и непрерывного в некоторой её окрестности U(x) \in \mathbb{R}^{m}называют линейный оператор \mathbf{J}, описывающий наилучшее линейное приближение функции в некоторой окрестности точки x и имеющий матрицу вида:

$$ { J }_{ f }(x)=\begin{Vmatrix} \frac { \partial f_{ 1 } }{ \partial x_{ 1 } } (x) & \frac { \partial f_{ 1 } }{ \partial x_{ 2 } } (x) & … & \frac { \partial f_{ 1 } }{ \partial x_{ m } } (x) \\ \frac { \partial f_{ 2 } }{ \partial x_{ 1 } } (x) & \frac { \partial f_{ 2 } }{ \partial x_{ 2 } } (x) & … & \frac { \partial f_{2} }{ \partial x_{ m } } (x) \\ … & … & … & … \\ \frac { \partial f_{m} }{ \partial x_{ 1 } } (x) & \frac { \partial f_{m} }{ \partial x_{ 2 } } (x) & … & \frac { \partial f_{m} }{ \partial x_{ m }} (x) \end{Vmatrix} $$

— так называемую матрицу Якоби (матрица касательного отображения). Для скалярного поля матрица Якоби имеет вид:

$$ { J }_{ f }(x)=\begin{Vmatrix} \frac { \partial f }{ \partial x_{ 1 } } (x) & \frac { \partial f }{ \partial x_{ 2 } } (x) & … & \frac { \partial f }{ \partial x_{ m } } (x) \end{Vmatrix} $$

Определение

Гессианом скалярного поля f: \mathbb{R}^{m} \rightarrow \mathbb{R}, дважды дифференцируемого по всем аргументам в точке x=(x^{1},...,x^{m}) \in \mathbb{R}^{m}, называют симметрическую квадратичную форму H(x)=\sum _{ i=1 }^{ m }{ \sum _{ j=1 }^{ m }{ h_{ij}x_{i}x_{j} }  } , описывающую наилучшее квадратичное приближение функции в некоторой окрестности точки x и имеющую матрицу вида:

$$ \mathbf{H}_{f}(x) = \begin{Vmatrix} \frac { \partial ^{ 2 }f }{ \partial x_{ 1 }^{ 2 } } (x) & \frac { \partial ^{ 2 }f }{ \partial x_{ 1 }\partial x_{ 2 } } (x) & … & \frac { \partial ^{ 2 }f }{ \partial x_{ 1 }\partial x_{ m } } (x) \\ \frac { \partial ^{ 2 }f }{ \partial x_{ 2 }\partial x_{ 1 } } (x) & \frac { \partial ^{ 2 }f }{ \partial x_{ 2 }^{ 2 } } (x) & … & \frac { \partial ^{ 2 }f }{ \partial x_{ 2 }\partial x_{ m } } (x) \\ … & … & … & … \\ \frac { \partial ^{ 2 }f }{ \partial x_{ m }\partial x_{ 1 } } (x) & \frac { \partial ^{ 2 }f }{ \partial x_{ m }\partial x_{ 2 } } (x) & … & \frac { \partial ^{ 2 }f }{ \partial x_{ m }^{ 2 } } (x) \end{Vmatrix} $$

— так называемую матрицу Гессе, определитель которой обычно подразумевается под Гессианом. Матрица Гессе также описывает локальную кривизну скалярного поля.


Утверждение

Поведение функция f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}, дважды дифференцируемой в точке x=(x^{1},...,x^{m}) \in \mathbb{R}^{m} и непрерывной в некоторой окрестности U(x) \subset \mathbb{R} этой точки, характеризуется формулой:

$$ f(\mathbf{x}+\mathbf{\Delta x}) \approx f(x) + \mathbf{J(x)\Delta x} + \frac{1}{2} \mathbf{\Delta x^{T} H(x) \Delta x} $$

Достаточное условие экстремума в терминах частных производных

Для того, чтобы функция f: U(x_{0}) \rightarrow \mathbb{R}, дважды дифференцируемая по всем аргументам в точке x_{0}=(x_{0}^{1},...,x_{0}^{m}) \in \mathbb{R}^{m}, в ней имела экстремум достаточно, чтобы её Гессиан был знакоопределён, причем, положительная определённость влечёт наличие в точке строгого локального минимума, отрицательная определённость — строгого локального максимума.

Доказательство показать

Замечание 1

Условие не является необходимым, так как ничего не говорит о случае, когда квадратичная форма полуопределена, т.е. является и неположительна или неотрицательна, т.е. содержит критические точки, не являющиеся экстремальными, строго больше или меньше нуля на всех векторах окрестности.

Пример показать

Замечание 2

Функция может принимать экстремальные значения в граничных точках области определения. Вышеприведенное достаточное условие для их выявления использовать не рекомендуется, следует обратиться к аппарату теории условного экстремума.


Пример (Демидович, №3629)

Исследовать на локальный экстремум функцию

$$ z = x y \sqrt{1-\frac{x^2}{a^2}-\frac{y^2}{b^2}} \quad (a > 0, \quad b > 0) $$

Решение показать

Источники:

Закрепление материала.

Таблица лучших: Достаточные условия экстремума функции многих переменных

максимум из 23 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Достаточные условия экстремума функции двух переменных: 1 комментарий

Обсуждение закрыто.