Интегральный признак

Интегральный признак сходимости ряда

Формулировка

Дана функция f определенная при всех x\geq1, неотрицательна и убывает, тогда ряд \sum_{n=1}^{\infty}f(n) сходится тогда и только тогда, когда сходится интеграл \int_{1}^{+\infty}{f(x)dx}.

Доказательство

Так как функция монотонна на промежутке \left[1,+\infty \right], тогда она интегрируема по Риману на любом конечном отрезке \left[1,\eta \right], и поэтому имеет смысл говорить о несобственном интеграле.
Если k\leq x\leq k+1, тогда f(k)\geq f(x)\geq f(k+1), k=1,2, ... (функция убывает) (рис. 1). Проинтегрировав это неравенство \left[k,k+1\right] имеем: f(k)\geq \int\limits_{k}^{k+1}{f(x)dx}\geq f(k+1), k=1,2, ....
integral_sign(1)
Суммируя от k=1 до k=n (рис. 2) получим:

\sum\limits_{k=1}^{n}{f(k)}\geq \int\limits_{1}^{n+1}{f(x)dx}\geq \sum\limits_{k=1}^{n}{f(k+1)}

integral_sign(2)
Положим s_{n}=\sum_{k=1}^{n}{f(k)}, будем иметь

s_{n}\geq \int\limits_{1}^{n+1}{f(x)dx}\geq s_{n+1}-f(1)
n=1,2, ...

Если интеграл сходится, то в силу неотрицательности f справедливо неравенство:

\int\limits_{1}^{n+1}{f(x)dx}\leq \int\limits_{1}^{+\infty}{f(x)dx}.

Отсюда следует:

s_{n+1}\leq f(1)+\int\limits_{1}^{+\infty}{f(x)dx},

то есть последовательность частичных сумм ряда ограничена сверху, а значит ряд сходится.
Если ряд сходится, пусть его сумма равна s, тогда \forall n\epsilon \mathbb{N}s_{n}\leq s  и следовательно \forall n\epsilon \mathbb{N}\int_{1}^{n+1}{f(x)dx}\leq s.
Пусть \xi, то беря n, так чтобы n\geq \xi, в силу неотрицательности функции имеем \int_{1}^{\xi }{f(x)dx}\leq \int_{1}^{n}{f(x)dx}\leq s.
Таким образом совокупность всех интегралов \int_{1}^{\xi }{f(x)dx} ограничена сверху, поэтому интеграл \int_{1}^{+\infty}{f(x)dx} сходится.

Пример

Дан ряд \sum_{n=1}^{\infty}\frac{1}{\sqrt[6]{(2n+3)^{7}}}. Исследовать ряд на сходимость.
Так как данная функция f(n)=\frac{1}{\sqrt[6]{(2n+3)^{7}}} определенна при всех n\geq1, неотрицательна и убывает, то воспользуемся  интегральным признаком сходимости ряда.
Проверим сходимость интеграла \int_{1}^{+\infty }{\frac{1}{\sqrt[6]{(2x+3)^{7}}}dx}.

\int\limits_{1}^{+\infty }{\frac{1}{\sqrt[6]{(2x+3)^{7}}}dx}=\frac{1}{2}\int\limits_{1}^{+\infty }{(2x+3)^{-\frac{7}{6}}d(2x+3)}=-\frac{1}{2}*6*\lim\limits_{b\rightarrow +\infty}\left ( \frac{1}{\sqrt[6]{(2x+3)}} \right)\left.\right |^b_1=-3*\lim\limits_{b\rightarrow +\infty}\left ( \frac{1}{\sqrt[6]{2b+3}}-\frac{1}{\sqrt[6]{5}} \right )=\frac{3}{\sqrt[6]{5}}

Интеграл сходится, а значит исходный ряд тоже сходится.

Тест

Предлагаем пройти тесты и закрепить пройденный материал

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *