Частные производные высших порядков

Частные производные высших порядков определяются при помощи индукции. Если говорить неформально, то каждая частная производная порядка больше чем 1 определяется, как производная от производной предыдущего порядка.
 

Определение

Частная производная (по независимым переменным) от частной производной порядка $m-1$ называется частной производной порядка $m(m=1,2,…)$.
Частная производная, полученная  с помощью дифференцирования по разным переменным, называется смешанной частной производной.
Частные производные высших порядков сохраняют все те же свойства, что и обычные частные производные.

Пример

Пусть дана функция $f(x,y,z)$.
Частной производной первого порядка по $x$ будет $\frac { df }{ dx } $.
Частной производной второго порядка по $x$ будет $\frac { { d }^{ 2 }f }{ d{ x }^{ 2 } } $
Смешанной производной третьего порядка будет $\frac { { d }^{ 3 }f }{ d{ x }^{ 2 }dy }$

Геометрический смысл частной производной

показать

Использованная литература

Частные производные высших порядков

Тест на понимание темы «Частные производные высших порядков»

Таблица лучших: Частные производные высших порядков

максимум из 3 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *