Условия сходимости тригонометрического ряда Фурье в точке. Признак Дини. Следствия

Необходимые понятия

Условие Гёльдера. Будем говорить, что функция $f(x)$ удовлетворяет в точке $x_0$ условия Гёльдера, если существуют односторонние конечные пределы $f(x_0 \pm 0)$ и такие числа $\delta > 0$, $\alpha \in (0,1]$ и $c_0 > 0$, что для всех $t \in (0,\delta)$ выполнены неравенства: $|f(x_0+t)-f(x_0+0)|\leq c_0t^{\alpha }$, $|f(x_0-t)-f(x_0-0)|\leq c_0t^{\alpha }$.

Формула Дирихле. Преобразованной формулой Дирихле называют формулу вида:
$$S_n(x_0)= \frac{1}{\pi}\int\limits_{0}^{\pi}(f(x_0+t)+f(x_0-t))D_n(t)dt \quad (1),$$ где $D_n(t)=\frac{1}{2}+ \cos t + \ldots+ \cos nt = \frac{\sin(n+\frac{1}{2})t}{2\sin\frac{t}{2}} (2)$ — ядро Дирихле.

Используя формулы $(1)$ и $(2)$, запишем частичную сумму ряда Фурье в следующем виде:
$$S_n(x_0)= \frac{1}{\pi}\int\limits_{0}^{\pi}\frac{f(x_0+t)+f(x_0-t)}{2\sin\frac{t}{2}}\sin \left ( n+\frac{1}{2} \right ) t dt$$
$$\Rightarrow \lim\limits_{n \to \infty }S_n(x_0) — \frac{1}{\pi}\int\limits_{0}^{\pi}\frac{f(x_0+t)+f(x_0-t)}{2\sin\frac{t}{2}} \cdot \\ \cdot \sin \left (n+\frac{1}{2} \right )t dt = 0 \quad (3)$$

Для $f \equiv \frac{1}{2}$ формула $(3)$ принимает следующий вид: $$ \lim\limits_{n \to \infty }\frac{1}{\delta}\frac{\sin(n+\frac{1}{2})t}{2\sin\frac{t}{2}}dt=\frac{1}{2}, 0<\delta <\pi. \quad (4)$$

Сходимость ряда Фурье в точке

Теорема. Пусть $f(x)$ — $2\pi$-периодическая абсолютно интегрируема на $[-\pi,\pi]$ функция и в точке $x_0$ удовлетворяет условию Гёльдера. Тогда ряд Фурье функции $f(x)$ в точке $x_0$ сходится к числу $$\frac{f(x_0+0)+f(x_0-0)}{2}.$$

Если в точке $x_0$ функция $f(x)$ — непрерывна, то в этой точке сумма ряда равна $f(x_0)$.

Доказательство показать

Следствие 1. Если $2\pi$-периодическая и абсолютно интегрируема на $[-\pi,\pi]$ функция $f(x)$ имеет в точке $x_0$ производную, то ее ряд Фурье сходится в этой точке к $f(x_0)$.

Следствие 2. Если $2\pi$-периодическая и абсолютно интегрируема на $[-\pi,\pi]$ функция $f(x)$ имеет в точке $x_0$ обе односторонние производные, то ее ряд Фурье сходится в этой точке к $\frac{f(x_0+0)+f(x_0-0)}{2}.$

Следствие 3. Если $2\pi$-периодическая и абсолютно интегрируема на $[-\pi,\pi]$ функция $f(x)$ удовлетворяет в точках $-\pi$ и $\pi$ условию Гёльдера, то в силу периодичности сумма ряда Фурье в точках $-\pi$ и $\pi$ равна $$\frac{f(\pi-0)+ f(-\pi+0)}{2}.$$

Признак Дини

Определение. Пусть $f(x)$ — $2\pi$-периодическая функция, Точка $x_0$ будет регулярной точкой функции $f(x)$, если

    1) существуют конечные левый и правый пределы $\lim\limits_{x \to x_0+0 }f(x)= \lim\limits_{x \to x_0-0 }f(x)= f(x_0+0)=f(x_0-0),$
    2) $f(x_0)=\frac{f(x_0+0)+f(x_0-0)}{2}.$

Теорема. Пусть $f(x)$ — $2\pi$-периодическая абсолютно интегрируема на $[-\pi,\pi]$ функция и точка $x_0 \in \mathbb{R}$ — регулярная точка функции $f(x)$. Пусть функция $f(x)$ удовлетворяет в точке $x_0$ условиям Дини: существуют несобственные интегралы $$\int\limits_{0}^{h}\frac{|f(x_0+t)-f(x_0+0)|}{t}dt, \\ \int\limits_{0}^{h}\frac{|f(x_0-t)-f(x_0-0)|}{t}dt,$$

тогда ряд Фурье функции $f(x)$ в точке $x_0$ имеет сумму $f(x_0)$, т.е. $$ \lim\limits_{n \to \infty }S_n(x_0)=f(x_0)=\frac{f(x_0+0)+f(x_0-0)}{2}.$$

Доказательство показать

Следствие Если $2\pi$ периодическая функция $f(x)$ кусочно дифференциируема на $[-\pi,\pi]$, то ее ряд Фурье в любой точке $x \in [-\pi,\pi]$ сходится к числу $$\frac{f(x_0+0)+f(x_0-0)}{2}.$$

Пример 1 показать

Пример 2 показать

Литература

Тест по материалу данной темы:

Условия сходимости тригонометрического ряда Фурье в точке. Признак Дини. Следствия: 1 комментарий

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *