Условия независимости криволинейного интеграла 2-го рода от пути интегрирования

Условия независимости криволинейного интеграла 2-го рода от пути интегрирования

Для того чтобы $ \int\limits_{\left( AB \right)}^{ } Pdx + Qdy $ при любых кривых $\left(AB \right) \subset \left( T \right)$ где $ \left( T \right)$ — это двухмерное пространство, не зависел от пути интегрирования $\left(AB \right)$ , а зависел только от положения начальной и конечной точек $A$ и $B$, необходимo и достаточно, чтобы $\int\limits_{\left( AB \right)}^{ } Pdx + Qdy = 0$ для любого замкнутого контура $\left( L \right) \subset \left( T \right)$

Необходимость

Пусть интеграл не зависит от пути интегрирования. Тогда для произвольного замкнутого контура $\left( L \right) \subset \left( T \right)$ изображенного на рисунке.

Произвольный замкнутый контур

Рисунок: Произвольный замкнутый контур

имеем

$$ \int\limits_{\left( L \right)}^{ } Pdx + Qdy = \int\limits_{\left( ACB \right)}^{ } Pdx + Qdy + \int\limits_{\left( BDA \right)}^{ } Pdx + Qdy = \int\limits_{\left( ACB \right)}^{ } Pdx + $$$+ Qdy — \int\limits_{\left( ADB \right)}^{ } Pdx + Qdy = 0 $

Так как интеграл не зависит от пути интегрирования.

Достаточность

Докажем, что при выполнении условии теоремы

$$ \int\limits_{\left( ACB \right)} Pdx + Qdy = \int\limits_{\left( ADB \right)} Pdx + Qdy $$
Для этого докажем, что разность левой и правой частей этого равенства равнв нулю:

$$ \int\limits_{\left( ACB \right)} Pdx + Qdy — \int\limits_{\left( ADB \right)} Pdx + Qdy = \int\limits_{\left( ACB \right)} Pdx + Qdy + \int\limits_{\left( BDA \right)} Pdx + $$ $ + Qdy = \int\limits_{\left( ACBDA \right)}^{ } Pdx + Qdy = 0$

как интеграл по закнутому контуру.

Пример:

Вычислить криволинейный интеграл при помощи формулы Ньютона-Лейбница.

$$ \int\limits_{\left ( 7 , 3 \right)}^{\left ( 4 , 2 \right)}ydx + xdy $$

Решение: показать

Пример:

Вычислить криволинейный интеграл $\int\limits_{\left ( 7 , 3 \right)}^{\left ( 4 , 2 \right)}\left ( x + y \right)dx + xdy$

Решение: показать
Литература
  1. А. Р. Лакерник, «Высшая математика краткий курс», Логос, 2008, стр. 404-414
  2. Тер-Крикоров A.M., Шабунин М.И. Курс Математического анализа стр. 505-508

Проверьте, как вы усвоили предоставленный материал.

Условия независимости криволинейного интеграла 2-го рода от пути интегрирования: 2 комментария

  1. — В вопросе «Почему разность левой и правой части этого равенства равна нулю» в правой части ноль. Т.е. Вы хотите отнять ноль и спросить что будет? Может просто спросить справедливо ли равенство?
    — Когда рисунок вставляется средствами Wordpres, есть возможность добавить подпись. Сейчас вместо подписи у Вас h3? что соответствует заголовку подраздела.
    — Точки в заголовках любого уровня не ставятся.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *