Первая теорема Абеля

Теорема

Если степенной ряд $$\sum\limits_{n=0}^{\infty}a_{n}z^{n}$$ сходится при $z=z_0\neq0$, то он сходится, и притом абсолютно, при любом $z$, для которого $\left|z\right|<\left|z_{0}\right|$.

abel

Доказательство

По условию ряд $\sum\limits_{n=0}^{\infty}a_{n}z^{n}$ сходится при $z=z_{0}$. Обозначим:
$$K=\left\{z:\left|z\right|<\left|z_{0}\right|\right\}.$$

Положим, что $\rho=\frac{\left|z \right|}{\left|z_{0} \right|}$. Причем так как $\left|z \right|<\left|z_{0} \right|$, то $\rho<1$.

Из сходимости ряда $\sum\limits_{n=0}^{\infty}a_{n}z^{n}$ в точке $z_{0}$ следует сходимость числового ряда вида $\sum\limits_{n=0}^{\infty}a_{n}z_{0}^{n}$. Следовательно, выполняется необходимое условие сходимости ряда, а именно: $$\lim\limits_{ n \to 0}a_{n}z_{0}^{n}=0.$$

Тогда последовательность $\left\{a_{n}z_{0}^{n}\right\}$ ограничена, т.е. $$\exists M>0\; \forall n:\left|a_{n}z_{0}^{n}\right|< M.$$

Имеем следующее: $\left|a_{n}z^{n}\right|=$$\left|a_{n}z^{n}\right|\cdot \left|\frac{z_{0}^{n}}{z_{0}^{n}}\right|=$$\left|a_{n}z_{0}^{n}\cdot\frac{z^{n}}{z_{0}^{n}}\right|=$$\left|a_{n}z_{0}^{n}\right|\cdot\left|\frac{z^{n}}{z_{0}^{n}}\right|=$$\left|a_{n}z_{0}^{n}\right|\rho^{n} < M\rho^{n}. $

Рассмотрим ряд $\sum\limits_{n=0}^{\infty}M\rho^{n}$. Так как мы знаем, что $0\leq\rho<1$, то, в силу необходимого условия сходимости ряда, данный ряд сходится.

Тогда, по признаку сравнения в форме неравенств, ряд $\sum\limits_{n=0}^{\infty}a_{n}z^{n}$ сходится абсолютно для $\forall z \in K$.

Следствие 1

Если степенной ряд $$\sum\limits_{n=0}^{\infty}a_{n}z^{n}$$ расходится при $z=z_{0}\neq0$, то он расходится при любом $z$, для которого $\left|z\right|>\left|z_{0}\right|$.
sledab

Доказательство показать

Следствие 2

Если степенной ряд $\sum\limits_{n=0}^{\infty}a_{n}z^{n}$ сходится в точке $z_{0}\neq0$, то в замкнутом круге $K_1=\left\{z:\left|z\right|\leq \vartheta\right\}$, где $\vartheta<\left|z_{0}\right|$ этот ряд сходится абсолютно и равномерно.

Доказательство показать

Литература

Теорема Абеля

Тест на закрепление вышеизложенного материала.


Таблица лучших: Теорема Абеля

максимум из 2 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *