Коэффициенты Тейлора, ряд Тейлора

Определение

Если функция $f$ определена в некоторой окрестности точки $x_{0}$ и является бесконечно дифференцируемой (имеет в данной точке производные всех порядков), то степенной ряд вида $$\sum\limits_{n=0}^{\infty}a_{n}\left(x-x_{0}\right)^n$$ называется рядом Тейлора функции $f$ в окрестности точки $x_{0}$, где числа $$a_{n}=\frac{{f}^{\left(n \right)}\left(x_{0} \right)}{n!} \;\;\; \left(n=0,1,2,\ldots \right)$$ это коэффициенты Тейлора функции $f$ в окрестности точки $x_{0}$.

Пример показать

Сходимость ряда Тейлора к функции

Пусть функция $f\left(x\right)$ бесконечно дифференцируема в точке $x_{0}$. Поставим ей в соответствие формулу Тейлора: $$f\left(x\right)=\sum\limits_{n=0}^{n}\frac{{f}^{\left(n\right)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}+r_{n}\left(x\right),$$ где $r_{n}\left(x \right)$ — остаток в формуле Тейлора. Обозначим, $$S_{n}\left(x\right)=\sum\limits_{n=0}^{n}\frac{{f}^{\left(n \right)}\left(x_{0} \right)}{n!}\left(x-x_{0}\right)^{n},$$ где $S_{n}\left(x\right)$— частичная сумма данного ряда Тейлора данной функции. Следовательно, можем записать равенство: $$f\left(x \right)=S_{n}\left(x \right)+r_{n}\left(x \right).$$ Тогда для того, чтобы $\lim\limits_{ n \to \infty}s_{n}\left(x \right)=f\left(x\right)$, функция $f\left(x\right)$ на заданном интервале должна быть равной сумме своего ряда Тейлора.

Таким образом, для сходимости ряда Тейлора функции $f\left(x\right)$ к функции $f\left(x\right)$ на некотором интервале необходимо и достаточно , чтобы для всех $x$ из этого интервала ее остаточный член в формуле Тейлора стремился к нулю: $$\lim\limits_{ n \to \infty}r_{n}\left(x \right)=0. $$

Литература

Коэффициенты Тейлора

Предлагаю пройти Вам данный тест на закрепление материала по данной статье.


Таблица лучших: Коэффициенты Тейлора

максимум из 3 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *