Критерий Коши равномерной сходимости несобственных интегралов, зависящих от параметра

Для равномерной сходимости несобственного интеграла $\int\limits_a^b f(x,y)dx$ необходимо и достаточно выполнение условия Коши. А именно: $\forall \varepsilon > 0 \, \exists \eta < b$ такое, что $\forall \eta^\prime,\eta^{\prime\prime} \epsilon (\eta,b)$ и $\forall y$ $\epsilon$ $Y$ выполнялось следующее неравенство $$\left|\int\limits_{\eta^\prime}^{\eta^{\prime\prime}}f(x,y)dx \right| <\varepsilon.$$

Доказательство

Необходимость

Пусть интеграл $\int\limits_a^b f(x,y)dx$ равномерно сходится по параметру $y$ $\epsilon$ $Y$. Из определения получаем, что $\forall\varepsilon > 0$ найдется такое $\eta$ $\epsilon$ $[a,b)$ , что $\forall \eta^\prime$ $\epsilon$ $[b,\eta)$ и для всех $y$ $\epsilon$ $Y$ выполнялось следующее неравенство
$$\left| \int\limits_{\eta^\prime}^{b}f(x,y)dx \right| < \frac{\varepsilon}{2}.$$ При $\eta^\prime , \eta^{\prime\prime}$ $\epsilon$ $[\eta,b)$, $y$ $\epsilon$ $Y$ получим такое неравенство $$\left| \int\limits_{\eta^\prime}^{\eta^{\prime\prime}}f(x,y)dx \right| = \left| \int\limits_{\eta^\prime}^{b}f(x,y)dx — \int\limits_{\eta^{\prime\prime}}^{b}f(x,y)dx \right| \leq $$ $$\leq \left|\int\limits_{\eta^\prime}^{b}f(x,y)dx\right| + \left|\int\limits_{\eta^{\prime\prime}}^{b}f(x,y)dx\right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} =\varepsilon,$$ а значит, что условие Коши выполнено.

Достаточность

Положим, что условие Коши выполняется. А это означает, что в силу критерия Коши несобственный интеграл $\int\limits_a^b f(x,y)dx$ сходится $\forall y$ $\epsilon$ $Y$. Докажем равномерную сходимость на $Y$. Рассмотрим неравенство $$\left|\int\limits_{\eta^\prime}^{\eta^{\prime\prime}}f(x,y)dx \right| <\varepsilon,$$ в котором устремим $\eta^{\prime\prime}$ к $b$, при этом $\eta^{\prime\prime} < b$. В результате для любого $\eta^{\prime} > \eta$ и $y$ $\epsilon$ $Y$ получаем следующее: $$\left|\int\limits_{\eta^{\prime}}^{b}f(x,y)dx \right| \leq\varepsilon,$$ что и означает равномерную сходимость интеграла $\int\limits_a^b f(x,y)dx$ на $Y$. $\Box$

Пример

Проверить интеграл на равномерную сходимость.

$$\int\limits_{0}^{+\infty} e^{-yx^{2}}dx$$

Решение

Данный интеграл сходится $\forall y > 0$. Если он сходится равномерно, то для любых (фиксированных) $\eta^{\prime},\eta^{\prime\prime}\geq\eta$ и при всех $y>0$ выполняется неравенство

$$\int\limits_{\eta^{\prime}}^{\eta^{\prime\prime}} e^{-yx^{2}}dx <\varepsilon. (\bigstar)$$

По теореме о непрерывности собственного интеграла, зависящего от параметра, интеграл в левой части представляет собой непрерывную функцию переменной $y$. Отсюда $$F(y) \equiv \int\limits_{\eta^\prime}^{\eta^{\prime\prime}} e^{-yx^{2}}dx \rightarrow F(0) = \eta^{\prime\prime} — \eta^\prime (y \rightarrow 0).$$

Так как $F(y) <\varepsilon$, то и  $F(0) = \lim\limits_{y \rightarrow 0}F(y) \leq\varepsilon$, что означает $\eta^{\prime\prime} — \eta^\prime \leq\varepsilon$. Однако из-за того, что $\eta^\prime,\eta^{\prime\prime}$ $\epsilon$ $[\eta, +\infty)$ можно выбрать таким образом, что $\eta^{\prime\prime} — \eta^\prime$ будет сколь угодно большим, неравенство $\bigstar$ не выполняется для всех $\eta^\prime,\eta^{\prime\prime}$ из полуинтервала $[\eta, +\infty)$. Значит, условие Коши для этого интеграла нарушено и он не является равномерно сходящимся. $\Box$

[свернуть]

Список литературы

Тест

Практические задания из данного теста были позаимствованы из сборника задач и упражнений по математическому анализу Б.П. Демидовича.

Рекомендую проверить насколько хорошо усвоен материал, пройдя следующий тест.

Таблица лучших: Критерий Коши равномерной сходимости несобственных интегралов, зависящих от параметра

максимум из 14 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *