М1574. Задача о связи радиусов описанных окружностей соответствующих треугольников шестиугольника и его полупериметра

Задача из журнала «Квант» (1996 год, 6 выпуск)

Условие

В выпуклом шестиугольнике ABCDEF AB||ED, BC||FE, CD||AF. Пусть R_A, R_C, R_E — радиусы окружностей, описанных около треугольников соответственно, а p — полупериметр шестиугольника. Докажите, что:
$$R_A+R_C+R_E\geq p$$

Иллюстрация к задаче

hexagon

Решение

Первое решение

Пусть длины сторон AB, BC, CD, DE, EF и FA равны a, b, c, d, e и f соответственно. Построим AP\perp BC, AS\perp EF, DQ\perp BC и DR\perp EF. Тогда PQRS — прямоугольник и BF\geq PS=QR. Следовательно, 2BF\geq PS+QR и тогда 2BF\geq (a\sin B+f\sin C)+(c\sin C+d\sin B) (мы воспользовались тем, что \angle A=\angle D, \angle B=\angle E, \angle C=\angle F).

Аналогично,
$$2DB\geq (c\sin A+b\sin B)+(e\sin B+f\sin A),$$
$$2FD\geq (e\sin C+d\sin A)+(a\sin A+b\sin C).$$

Запишем выражение для R_A, R_C, R_E:
$R_A=\frac{BF}{2\sin A}$, $R_C=\frac{DB}{2\sin C}$ и $R_A=\frac{FD}{2\sin B}$.

Таким образом,
$$4(R_A+R_C+R_E)\geq$$ $$\geq a(\frac{\sin B}{\sin A}+\frac{\sin A}{\sin B})+b(\frac{\sin B}{\sin C}+\frac{\sin C}{\sin B})+…\geq$$ $$\geq 2(a+b+…)=4p$$
следовательно, R_A+R_C+R_E\geq p. Равенство достигается тогда и только тогда, когда \angle A=\angle B=\angle C и BF\perp BC, то есть в случае правильного шестиугольника.

Н. Седракян

Второе решение

Рассматриваемый шестиугольник ABCDEF можно получить и некоего треугольника KLM, проведя прямые, параллельные сторонам этого треугольника.

Пусть KL=m, LM=k, MK=l, \angle LKM=\delta, высота к стороне LM равна h, коэффициенты подобия (гомотетин) треугольников KCB, DLE и AFM по отношению к треугольнику KLM равны соответственно x, y, z. Понятно, что
$x+y\leq 1$, $y+z\leq 1$, $x+z\leq 1$ $(*)$
(мы допускаем ниже и случаи равенства). Если R — радиус окружности, описанной около треугольника ABF,
$$R=\frac{BF}{2\sin\delta}\geq\frac{h(1-x)}{2\sin\delta}=\frac{S_KLM(1-x)}{2k\sin\delta}=\frac{lm}{k}(1-x).$$

Оценивая аналогично другие радиусы и выражая стороны шестиугольника через k, l, m, x, y, z, получим, что нам достаточно доказать неравенство
$$\frac{lm}{k}(1-x)+\frac{mk}{l}(1-y)+\frac{kl}{m}(1-z)\geq$$ $$\geq k(1+x-y-z)+l(1+z-x-y)+$$ $$+m(1+y-z-x).$$ $(**)$

Это неравенство линейно относительно . Но переменные неотрицательны и удовлетворяют еще условию $(*)$ (на самом деле они больше нуля и неравенства $(*)$ строгие, но мы несколько расширяем область их изменения). Областью изменения их является многогранник в координатном пространстве (x; y; z) с вершинами (0; 0; 0), (1; 0; 0), (0; 1; 0), (0; 0; 1), (\frac{1}{2}; \frac{1}{2}; \frac{1}{2}). Достаточно проверить, что неравенство $(**)$ выполняется в этих вершинах. Например, при x=y=z=\frac{1}{2} и при x=y=z=0 получаем неравенство
$$\frac{lm}{k}+\frac{mk}{l}+\frac{kl}{m}\geq k+l+m;$$
оно легко доказывается сложением очевидных неравенств
$\frac{kl}{m}+\frac{mk}{l}\geq 2k$, $\frac{kl}{m}+\frac{lm}{k}\geq 2l$, $\frac{lm}{k}+\frac{mk}{l}\geq 2m$.
Для остальных трех вершин неравенство $(**)$ очевидно.

И. Шарыгин

Замечание

Для центрально-симметричных шестиугольников эта задача эквивалентна замечательному неравенству Эрдеша-Морделла: для любой точки M внутри треугольника сумма расстояний от M до вершин по крайней мере вдвое больше суммы расстояний от M до сторон (опустите перпендикуляры MB, MD, MF на стороны и постройте параллелограммы BMFA, DMBC, FMDE; радиусы описанных окружностей треугольников BMF, DMB, FMD равны R_A, R_C, R_E в условии и равны расстояниям от точки M до вершин треугольника).

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *