М1633. Биссектрисы

Задача из журнала «Квант» (1998 год, 2 выпуск)


Условие задачи

В треугольнике $ABC$ отрезки $CM$ и $BN$ – медианы, $P$ и $Q$  – точки соответственно на $AB$ и $AC$ такие, что биссектриса угла $C$ треугольника одновременно является биссектрисой угла $MCP$, а биссектриса угла $B$ – биссектрисой угла $NBQ$. Можно ли утверждать, что треугольник $ABC$ равнобедренный, если
а) $BP = CQ$;
б) $AP = AQ$;
в) $PQ || BC$;
Отрезки $BQ$ и $CP$ называются симедианами.

Решение

Теорема

$AB = c$, $AC = b$, $AS$ – симедиана. Тогда $\displaystyle \frac{BS}{SC}=\frac{c^{2}}{b^{2}}$.

Пусть $AM$ – медиана; обозначим $\alpha = \angle BAS = \angle CAM$, $\angle MAS = \beta$ (рис.1).
Имеем: $\displaystyle \frac{BS}{SC}=\frac{S_{ABS}}{S_{ASC}} = \frac{c\sin\alpha }{b(\sin\alpha +\beta)}$, $\displaystyle 1 = \frac{S_{ABM}}{S_{AMC}} = \frac{c\sin(\alpha + \beta)}{b\sin \alpha}$.
Значит, $\displaystyle \frac{BS}{SC}=\frac{c^{2}}{b^{2}}$.

а) Да. Перепишем равенство $BP = CQ$, пользуясь теоремой:$$b^{3} + ba^{2} = c^{3} + ca^{2}.$$
Поскольку $f(x)= x^{3}+xa^{2}$ – монотонная функция, получаем, что $b=c$.
К этому равенству можно прийти и так: $b^{3}-c^{3} = a^{2}(c-b);$ значит, при $b\neq c$ будет $b^{2} + bc + c^{2} = -a^{2};$ но $b^{2} + bc + c^{2} \geqslant 0.$
в) Да. $\displaystyle \frac{AQ}{QC}=\frac{AP}{PB}$, т.е. $\displaystyle \frac{c^{2}}{a^{2}}=\frac{b^{2}}{a^{2}}.$

б) Нет. $\displaystyle AP = c \cdot \frac{b^{2}}{b^{2} + a^{2}}$, $\displaystyle AQ = b \cdot \frac{c^{2}}{c^{2} + a^{2}}$.
Перепишем $AP = AQ: bc(b — c) = a^{2}(b — c)$. Значит, в неравнобедренном треугольнике таком, что $a^{2} = bc$, имеем $AP = AQ$.

  1. Если A – наибольший или наименьший угол треугольника, $AP = AQ$, то треугольник равнобедренный.
  2. Неравнобедренный треугольник такой, что $AP = AQ$ – это треугольник со сторонами вида $d, dq, dq^{2}$, где $q \neq 1$.
  3. Пункт б) (именно он предлагался на Турнире городов) можно решить и без помощи теоремы, пользуясь лишь соображениями непрерывности. Это можно сделать по такой, например, схеме.
    Пусть для треугольника $ABC$ будет $AP > AQ$, а для треугольника $ {A}'{B}'{C}’$ ${AP}’ < {AQ}’$. «Перетянем» $A$ в ${A}’$, $B$ в ${B}’$, $C$ в ${C}’$; по дороге нам встретится треугольник $A^{\prime\prime}B^{\prime\prime}C^{\prime\prime}$ такой, что $A^{\prime\prime}P^{\prime\prime} = A^{\prime\prime}Q^{\prime\prime}$. Если возникающие при этом «перетягивании» треугольники не являются равнобедренными, то задача решена.

Приведем пример реализации этой схемы.
Рассмотрим треугольник рисунка 2:

$$\displaystyle AB = 1, \angle A = \frac{\pi}{3}, \angle B = \frac{\pi}{2};$$ $CD$– биссектриса.
Так как $\displaystyle \frac{AD}{BD} = \frac{AC}{BC}$, то $\displaystyle AD > \frac{1}{2}$: следовательно, $\displaystyle AP > \frac{1}{2}.$
Далее, $\displaystyle \angle ABQ = \angle NBC = \frac{\pi}{6}$; значит, $\displaystyle AQ = \frac{1}{2}$.

Рассмотрим теперь треугольник рисунка 3:
$$\angle A = \frac{\pi}{4}, \angle B = \frac{\pi}{2}, BC = 1.$$ Имеем: $\displaystyle AQ = \frac{\sqrt{2}}{2}$; обозначим через G точку пересечения медиан, из подобных треугольников $CQG$ и $CBP$ получаем $\displaystyle \frac{BP}{BC} = \frac{GQ}{QC} = \frac{GQ}{BQ} = \frac{1}{3}$. Окончательно: $\displaystyle AP = 1 – BP = \frac{2}{3} < \frac{\sqrt{2}}{2} = AQ$.

В. Сендеров

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *