4.6 Свойство промежуточных значений

Теорема Больцано – Коши (о корне). Пусть функция $f$ непрерывна на отрезке $\left[a, b\right]$ и на концах этого отрезка принимает значения разных знаков. Тогда существует точка $c \in \left(a, b\right)$, такая, что $f\left(c\right) = 0$.

Применяем метод деления отрезка пополам и лемму Кантора о вложенных отрезках. Пусть, например, $f\left(a\right)<0<f\left(b\right)$. Обозначим $\left[a_0, b_0\right] \equiv \left[a, b\right]$ и разделим $\left[a_0, b_0\right]$ пополам точкой $c_0 =\displaystyle\frac{a_0+b_0}{2}$. Если $f\left(c_0\right) = 0$, то теорема доказана. В противном случае из двух полученных отрезков $\left[a_0, c_0\right]$ и $\left[c_0, b_0\right]$ выберем такой, что на его концах функция f принимает значения разных знаков. Это будет отрезок $\left[a_1, b_1\right] \equiv \left[a_0, b_0\right]$, если $f \left(c_0\right) > 0$, и $\left[a_1, b_1\right] \equiv \left[c_0, b_0\right]$, если $f \left(c_0\right) < 0$. Заметим, что длина отрезка$\left[a_1, b_1\right]$ равна $b_1 − a_1$ = $\displaystyle\frac{b-a}{2}$. На следующем шаге разделим $\left[a_1, b_1\right]$ пополам и продолжим описанную процедуру. Если на каком-либо шаге встретится точка деления, в которой функция $f$ обращается в нуль, то теорема доказана. В противном случае получим последовательность вложенных друг в друга отрезков $\left[a_n, b_n\right]$, таких, что их длины $b_n − a_n =\displaystyle\frac{b−a}{2^n} \rightarrow 0 \;при\; n \to \infty$. По лемме Кантора, существует точка c, принадлежащая всем $\left[a_n, b_n\right]$. Покажем, что $f\left(c\right) = 0$. Отсюда, в частности, будет следовать, что $c$ не совпадает ни $с\;a$, ни $с\;b$, т. к. $f\left(a\right) \neq 0$ и $f\left(b\right) \neq 0$.
Для доказательства равенства $f\left(c\right) = 0$ покажем, что для всех $n$ справедливо неравенство
$$\begin{equation}\label{eq:exp1}f \left(a_n\right) < 0 < f \left(b_n\right)\end{equation}.$$
Применим индукцию по $n$. При $n = 0$ неравенство $\eqref{eq:exp1}$ совпадает с принятым условием $f\left(a\right)<0<f\left(b\right)$. Предположим, что неравенство $\eqref{eq:exp1}$ справедливо при некотором $n$, и покажем, что оно имеет место и для $n + 1$. Обозначим $c_n =\displaystyle\frac{a_n+b_n}{2}$. Тогда, согласно описанной процедуре отбора сегментов, мы полагаем $\left[a_n+1, b_n+1\right] \equiv \left[a_n, c_n\right]$, если $f \left(c_n\right) > 0$, и $\left[a_n+1, b_n+1\right] \equiv \left[c_n, b_n\right]$, если $f \left(c_n\right) < 0$. Отсюда легко видеть, что неравенство $\left(4.5\right)$ справедливо и при $n + 1$, и тем самым $\eqref{eq:exp1}$ доказано для всех $n = 0, 1, \dotsc.$
Далее, поскольку $a_n \leqslant c \leqslant b_n \left ( n = 0, 1, \dotsc\right )$ и $b_n − a_n \rightarrow 0 \left(n \to \infty \right)$, то $a_n \rightarrow c \left(n \to \infty \right)$ и $b_n \rightarrow c \left(n \to \infty \right)$. В силу непрерывности функции $f$ в точке $c$, из неравенств $f\left(a_n\right) < 0$ следует, что и $f\left ( c\right ) = \lim_\limits{n \to \infty}f \left(a_n\right) \leqslant 0$.
С другой стороны, поскольку $f \left(b_n\right) > 0$, то и $f\left ( c\right ) = \lim_\limits{n \to \infty}f \left(b_n\right) \leqslant 0$.
Итак, получили, что $f\left(c\right) \leqslant 0$ и $f(c) \geqslant 0$. Отсюда следует, что $f\left(c\right) = 0$.

Следствие (свойство промежуточных значений). Пусть функция $f$ непрерывна на отрезке $\left[a, b\right]$. Тогда функция $f$ принимает все значения, заключенные между $f\left(a\right)$ и $f\left(b\right)$. Именно, для любого числа $A$, заключенного между $f\left(a\right)$ и $f\left(b\right)$, найдется такая точка $c \in \left[a, b\right]$, что $f\left(c\right) = A$.

Для доказательства этого следствия достаточно применить теорему Больцано – Коши к функции $g\left(x\right) = f\left(x\right) − A$.
Утверждение, обратное данному следствию, неверно. В этом легко убедиться на примере функции $$\left\{\begin{matrix}
x,    x\in\mathbb{Q}\cap \left[0,1\right]\\
1-x, x \in \left[0,1\right] \setminus \mathbb{Q}
\end{matrix}\right.$$Если же функция $f$ монотонна на $\left[a, b\right]$, то, как показывает теорема $3$, данное следствие можно обратить. Таким образом, из теоремы $3$ и свойства промежуточных значений мы получаем следующий критерий непрерывности монотонной функции.

Теорема. Монотонная на отрезке $\left[a, b\right]$ функция $f$ непрерывна на этом отрезке тогда и только тогда, когда она принимает все промежуточные значения между $f\left(a\right)$ и $f\left(b\right)$.

Пример. Покажем, что каждый многочлен нечетной степени имеет по крайней мере один действительный корень. Пусть $P_{2k+1}\left(x\right) = a_0x^{2k+1} + a_1x^{2k} + \cdots + a_{2k+1}$, причем можем считать, что $a_0 > 0$. Тогда, очевидно, $\lim_\limits{x\to-\infty }P_{2k+1}\left(x\right ) = -\infty$, а значит, существует такое $a$, что $P_{2k+1}\left(a\right ) < 0$. Далее, поскольку $\lim_\limits{x\to+\infty }P_{2k+1}\left(x\right ) = +\infty$,то найдется такое $b > a$, что $P_{2k+1}\left(a\right ) > 0$. Поскольку многочлен $P_{2k+1}$ непрерывен на $\left[a, b\right]$, то, в силу теоремы Больцано-Коши, найдется такое $c \in \left(a,b\right)$, что $P_{2k+1}\left(c\right ) =0$.

Примеры

  1. Пусть функция $f(x)=x^{2}$ определенна и непрерывна на отрезке $[-2,2]$.
    Посчитаем значение функции в точках: $x=-0,75$, $x=0,25$, $x=1,5$.

    Решение

    Мы знаем что данная функция непрерывна на данном отрезке (в силу того что это полиномиальная функция), а значит, в силу второй теоремы Коши, она принимает все свои промежуточные значения и ее значения в указанных точках равны:
    $f(-0,75)=0,5625$, $f(0,25)=0,0625$, $f(1,5)=2,25$.

  2. Докажите, что многочлен нечетной степени всегда имеет корень.
    Указание. Представьте многочлен $p\left(x\right)=a_nx^n+a_{n−1}x^{n−1}+\cdots+a_1x+a_0$ в виде $p\left(x\right)=x^n\left(a_n+\displaystyle\frac{a_{n−1}}{x}+\displaystyle\frac{a_{n−2}}{x^2}+\cdots+\displaystyle\frac{a_1}x^{n−1}+\displaystyle\frac{a_0}{x^n}\right)$ и покажите, что при $x$, больших по модулю, он принимает как положительные, так и отрицательные значения.

    Решение

    Без ограничений общности $a_n > 0$. $\lim_\limits{x\to+\infty}\left(x^n\left(a_n+\cdots+\displaystyle\frac{a_0}{x^n}\right)\right)$ — есть величина положительная.Если устремить $x$ в минус бесконечность,то $p\left(x\right)$. Есть величина отрицательная. Значит можем выбрать точки $a,b$(большие по модулю и $a_0$) такие, что $p\left(a\right)0$
    Многочлен нечетной степени есть непрерывная функция.
    По теореме Больцано-Коши существует $c\in\left[a,b\right]$
    такая, что $p\left(c\right) = 0$
    Значит как минимум один корень есть.

Литература

Смотрите также

  1. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: учеб. пособие для ун-тов и пед. ин-тов. Т. 2 / Г. М. Фихтенгольц. — 5-е изд., стереотип. — Москва: Физматгиз, 1970 (стр.134, 171)
  2. Кудрявцев Л. Д. Курс математического анализа : учебник для вузов: В 3 т. Т. 1. Дифференциальное и интегральное исчисления функций одной переменной / Л. Д. Кудрявцев. — 5-е изд., перераб. и доп. — Москва: Дрофа, 2003 (стр.216)

Свойство промежуточных значений

Пройдя этот тест, вы закрепите пройденный ранее материал по теме «Свойство промежуточных значений»

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *