12.6 Частные производные высших порядков

Пусть $f – $ действительная функция на открытом множестве $E \subset \mathbb {R}^n.$Предположим, что на этом множестве у нее существует $i — $я частная производная. Это $–$ тоже функция на $E$. Может оказаться, что и у этой функции существует частная производная, например, по переменной $x^{j}$. Она называется частной производной функции $f$ второго порядка и обозначается
$$ \frac{\partial^2 f}{\partial x^j \partial x^i}\left(x_0\right) = \frac{\partial}{\partial x^j}\left(\frac{\partial f}{\partial x^i}\right)\left(x_0\right),\:\:f^{\prime\prime}_{x^i x^j} (x_0),\:\: D_{ij} f\left(x_0\right). $$
По индукции определяются частные производные любого порядка. Частная производная порядка $q$, взятая по переменным $x^{i_1},x^{i_2},…,x^{i_q}$, в точке $x_0$ обозначается
$$ \frac{\partial^q f}{\partial x^{i_1} \cdots \partial x^{i_q}}\left(x_0\right). $$
Если среди индексов $i^1,…i^q$ имеются различные, то соответствующая частная производная называется смешанной.

Пример. Пусть $f\left( x, y \right) = x^3 y − 2xy^2$. Частные производные первого порядка равны $f^{\prime}_x = 3x^2y−2y^2,f^{\prime}_y = x^3 − 4xy.$ Частные производные второго порядка равны $f^{\prime\prime}_{xx} = f^{\prime\prime}_{x^2} = 6xy, f^{\prime\prime}_{xy} = 3x^2 − 4xy,f^{\prime\prime}_{yy} = f^{\prime\prime}_{y^2} = −4x,f^{\prime\prime}_{yx} = 3x^2−4y.$

Две различные смешанные производные оказались равными. Возникает вопрос: всегда ли это так?

Пример функции, у которой смешанные производные различные.
Пусть
$$\displaystyle \begin{equation*}f\left(x,y\right) = \begin{cases} xy\frac{x^2-y^2}{x^2+y^2}, x^2+y^2>0\\ 0, x\:=\:y\:=\:0 \end{cases}\end{equation*}$$
Найдем
$$f^{\prime}_x = y\left[\frac{x^2-y^2}{x^2+y^2}+x\frac{2x(x^2+y^2)-2x\left(x^2-y^2\right)}{ (x^2+y^2)^2}\right] =$$ $$=\:\frac{y}{x^2+y^2}\left(x^2-y^2+\frac{4x^2y^2}{x^2+y^2}\right),\:\left(x^2+y^2 > 0\right) \: ,$$ $$f_x^{\prime}\left(0,0\right)\:=\:0 , f_{xy}^{\prime\prime} = \lim\limits_{y\to 0}\frac{f^{\prime}_x\left(0,y\right)\:-\: f^{\prime}_x(0,0)}{y} = -1 , f_{yx}^{\prime\prime}\left(0,0\right) = 1.$$
Итак, получили, что смешанные производные не равны между собой.

Теорема Шварца: Пусть $f – $ действительная функция, определенная в некоторой окрестности $U$ точки $x_0$ и имеющая всюду в этой окрестности частные производные $\displaystyle \frac{\partial f}{\partial x^i}, \frac{\partial f}{\partial x^j} \frac{\partial^2 f}{\partial x^i \partial x^j}$. Если смешанная производная $\displaystyle \frac{\partial^2 f}{\partial x^i \partial x^j}$ непрерывна в точке $x_0$, то в этой точке существует и другая смешанная производная $\displaystyle \frac{\partial^2 f}{\partial x^j \partial x^i}(x_0)$, и при этом справедливо равенство
$$\frac{\partial^2 f}{\partial x^j \partial x^i}\left(x_0\right) = \frac{\partial^2 f}{\partial x^i \partial x^j}\left(x_0\right).$$

Достаточно доказать теорему для случая $n = 2$, поскольку в ней по существу идет речь только о функциях двух переменных при фиксированных всех остальных. Итак, предположим, что задана функция двух переменных $f\left(x,y\right)$ и существуют $f^{\prime}_x, f^{\prime}_y, f^{\prime\prime}_{xy}$. Нужно доказать, что существует $f^{\prime\prime}_{yx}\left(x_0,y_0\right)$ и она равна $f^{\prime\prime}_{xy}\left(x_0,y_0\right)$.
Рассмотрим разностное отношение
$$Q(h) = \frac{f^{\prime}_y(x_0+h,y_0)\:-\:f^{\prime}_y(x_0,y_0)}{h}$$
Заметим, что при любом $x$
$$f^{\prime}_y\left(x,y_0\right)\: = \: \lim\limits_{\mu \to 0}\frac{f\left(x,y_0\:+\:\mu\right) \:-\:f\left(x,y_0\right)}{\mu}.$$
Обозначим
$$\varphi_{\mu}(x)\:\equiv\: \frac{f(x,y_0\:+\:\mu)\:-\:f(x,y_0)}{\mu},$$
$$Q^{\ast}(h,\mu)\:\equiv\: \frac{\varphi_{\mu}\left(x_0\:+\:h\right)\:-\: \varphi_{\mu}\left(x_0\right)}{h}.$$
Если $h$ фиксировано, то
$$\lim\limits_{\mu\to 0}Q^{\ast}(h,\mu) \:=\: Q(h).$$
Далее, пользуясь формулой конечных приращений, получаем
$$\frac{\varphi_{\mu}\left(x_0\:+\:h\right)\: -\: \varphi_{\mu}\left(x_0\right)}{h}\:=\: \frac{d \varphi_{\mu}}{dx \left(x_0\:+\:\theta_1 h\right)}\: = $$
$$=\: \frac{f^{\prime}_x\left(x_0\:+\: \theta_1 h,y_0\:+\: \mu\right)\:-\: f^{\prime}_x\left(x_0\:+\: \theta_1h,y_0\right)}{\mu}.$$
Теперь воспользуемся формулой конечных приращений по $y$ и получим, что последнее отношение равно
$$\frac{d\varphi_{\mu}}{dx}\left(x_0\:+\: \theta_1h\right)\:=\:\frac{f^{\prime}_x\left(x_0\:+\:\theta_1h,y_0\:+\:\mu\right)\:-\: f^{\prime}_x\left(x_0 \:+\: \theta_1h,y_0\right)}{\mu}\: =$$
$$=\: f^{\prime\prime}_{xy}\left(x_0\:+\: \theta_1h,y_0\:+\: \theta_2\mu\right),$$
где $\theta_1,\theta_2\: –$ величины, зависящие от $h,\mu$ и заключены в интервале $\left(0,1\right).$
Итак, получили $$Q^{\ast}\left(h,\mu\right)\:=\:f^{\prime\prime}_{xy}\left(x_0\:+\: \theta_1h,y_0\:+\:\theta_2\mu\right).$$ Но поскольку $f^{\prime\prime}_{xy}$ непрерывна в точке $\left(x_0,y_0\right)$ по условию, то получаем
$$Q^{\ast}\left(h,\mu\right)\:=\:f^{\prime\prime}_{xy}\left(x_0,y_0\right)\:+\:\varepsilon\left(h,\mu\right),$$
где $\varepsilon\left(h,\mu\right) \to 0$ при $\left(h,\mu\right) \to \left(0,0\right)$.
Зададим $\varepsilon > 0$ и найдем такое $\delta > 0$, что при $0 < |h| < \delta, \: 0 < |\mu| < \delta$ справедливо неравенство $|\varepsilon(h,\mu)| < \varepsilon$. Поэтому при указанных значениях $h,\mu$ имеет место неравенство
$$|Q^{\ast}\left(h,\mu\right)\:-\: f^{\prime\prime}_{xy}\left(x_0,y_0\right)| < \varepsilon .$$
Теперь фиксируем $h, 0<|h|<\delta $,и $\mu$ устремляем к нулю. Тогда получим
$$|Q\left(h\right)\:-\:f^{\prime\prime}_{xy}\left(x_0,y_0\right)| \leq \varepsilon.$$
Это означает, что $\lim\limits_{h\to 0}Q\left(h\right)\:=\:f^{\prime\prime}_{xy}\left(x_0,y_0\right)$. Отсюда следует справедливость теоремы Шварца.

Определение: Пусть $q\:–$ натуральное число. Действительная функция $f$, определенная на открытом множестве $E\subset \mathbb {R}^n$,называется функцией класса $C^q$ на этом множестве, если она имеет все частные производные до порядка $q$ включительно, непрерывные на этом множестве.

Теорема: Если $f\:–\:$функция класса $C^q$ на открытом множестве $E\subset \mathbb {R}^n$, то значение любой смешанной производной порядка $q\:$ не зависит от последовательности, в которой выполняется дифференцирование.

Эта теорема доказывается с помощью теоремы Шварца по индукции. Мы не будем приводить это доказательство.

Примеры решения задач

  1. Найти частные производные второго порядка функции $f\left(x,y\right)\:=\:x^3\:+\:y^3\:-\:3xy.$
  2. Решение

    $\displaystyle\frac{\partial f}{\partial x}\:=\:3x^2\:-\:3y$
    $\displaystyle\frac{\partial f}{\partial y}\:=\:3y^2\:-\:3x$
    $\displaystyle\frac{\partial^2 f}{\partial x^2}\:=\:6x$
    $\displaystyle\frac{\partial^2 f}{\partial y^2}\:=\:6y$
    $\displaystyle\frac{\partial^2 f}{\partial x \partial y}\:=\:-3.$

  3. Найти частные производные второго порядка функции $f(x,y)\:= \:\sin x\:-\:x^2y.$
  4. Решение

    $\displaystyle\frac{\partial f}{\partial x}\:=\:\cos{x}\:-\:2xy$
    $\displaystyle\frac{\partial f}{\partial y}\:=\:-x^2$
    $\displaystyle\frac{\partial^2 f}{\partial x^2}\:=\:-\sin x\:-\:2y$
    $\displaystyle\frac{\partial^2 f}{\partial y^2}\:=\:0$
    $\displaystyle\frac{\partial^2 f}{\partial x \partial y}\:=\:-2x$
    $\displaystyle\frac{\partial^2 f}{\partial y \partial x}\:=\:-2x.$

  5. Найти дифференциал $df$ функции $f\left(x,y,z\right)\:=\:\sqrt{x^2\:+\:y^2\:+\:z^2}$
  6. Решение

    $\displaystyle\frac{\partial f}{\partial x}\:=\:\frac{x}{\sqrt{x^2\:+\:y^2\:+\:z^2}}$
    $\displaystyle\frac{\partial f}{\partial y}\:=\:\frac{y}{\sqrt{x^2\:+\:y^2\:+\:z^2}}$
    $\displaystyle\frac{\partial f}{\partial z}\:=\:\frac{z}{\sqrt{x^2\:+\:y^2\:+\:z^2}}$
    $\displaystyle df \:=\: \frac{x}{\sqrt{x^2\:+\:y^2\:+\:z^2}} dx\:+\:\frac{y}{\sqrt{x^2\:+\:y^2\:+\:z^2}} dy\:+\:\frac{z}{\sqrt{x^2\:+\:y^2\:+\:z^2}}dz.$

Пройдите тест, чтобы проверить свои знания

См. также:

  1. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления Т.I. — М.: ФМЛ, 1962
  2. Кудрявцев Л.Д. Курс математического анализа, т.1. — М.: Дрофа, 2003
  3. Тер-Крикоров А. М., Шабунин М. И, Курс математического анализа. — М.: ФИЗМАТ-ЛИТ, 2003
  4. Никольский С. М. Курс математического анализа. Т. I. — М.: Наука, 1983
  5. <Б.П. Демидович "Сборник задач и упражнений по математическому анализу", Отдел 6, Параграф 2

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *