M610. Об «интересных» наборах чисел

Задачa из журнала «Квант» (1980 год, 2 выпуск)

Условие

Фиксируем $k \in \mathbb N$.
$а)$ Рассмотрим множество всех наборов целых чисел $a_1, \ldots , a_k$ таких, что $0 \le a_1 \le a_2 \le \ldots \le a_k \le k$; обозначим число таких наборов через $N.$ Рассмотрим среди них те, для которых $a_k = k$; пусть их число равно $M$. Докажите, что $N=2M$.
$б)$ Наложим на рассматриваемые наборы дополнительное ограничение: сумма $a_1 + \ldots + a_k$ делится на $k$. Пусть соответствующие числа равны $N’$ и $M’$. Докажите, что $N’ = 2M’$ (Из рисунка 1 видно, что при $k=3$ эти числа равны $M=10$, $N=20$; $M’=4$, $N’=8$.)

Рис. 1.

Решение

Как известно, если два множества имеют одинаковое число элементов, между ними можно установить взаимно однозначное соответствие. Собственно говоря, это и есть определение того, что в множествах элементов поровну, но этот факт иногда забывается. А между тем довольно часто равенство двух чисел устанавливается именно через взаимно однозначное соответствие подходящих множеств.

Нам нужно доказать, что наборов, в которых $a_k = k$ ровно половина. Поэтому попробуем установить взаимно однозначное соответствие между этими наборами и оставшимися, теми, у которых $a_k < k$.

Сопоставить набору $(a_1, a_2, \ldots, a_k)$ набор $(a_k, a_{k-1}, \ldots, a_1)$ нельзя, так как новый набор — невозрастающий. Можно попробовать сопоставить набору $(a_1, \ldots, a_k)$ набор $k-a_k, k-a_{k-1}, \ldots, k-a_1)$: он уже — неубывающий, но… $k-a_1$ не обязательно быть меньше $k$. Поэтому это соответствие не решает задачу.

Значит, необходимо более сложное соответствие. Для его построения нам понадобится понятие диаграммы Юнга данного набора.

Рис. 2

Что это такое, проще всего объяснить на примере: набору $(0, 0, 2, 3, 5)$ соответствует диаграмма, изображенная на рисунке 2 — в каждой строке столько соответствующее число.

Дополним диаграмму Юнга до квадрата (рис. 3). Тогда становится ясно, что наша первоначальная идея заключалась в том, что отсчитывать диаграмму не из красных, а из белых квадратиков (и, соответственно, не слева-снизу, а справа-сверху).

Рис. 3

Попытаемся теперь дополнить рисунок 3 вертикальной диаграммой — как на рисунке 4. Отсчитывая эту диаграмму снизу-слева, получим набор $(2, 2, 3, 4, 4)$. Назовем этот набор дополнительным к набору $(0, 0 , 2, 3, 5)$. Еще один пример изображен на рисунке 5.

Ясно, что если исходный набор $(a_1, \ldots, a_k),$ а дополнительный — $(b_1, \ldots, b_k)$, то $(a_k = k)$ тогда и только тогда, когда $b_k < k$. В самом деле, $a_k = k$, если верхняя правая клетка входит в основную диаграмму Юнга, и $a_k < k,$ если она входит в дополнительную.

Рис. 4

Установленное нами соответствие между наборами, у которых $a_k = k$, и наборами, у которых $a_k < k$, очевидно, взаимно однозначно. Тем самым мы решили $a)$. Кроме того, сумма чисел исходного и дополнительного наборов равна $k^2$ (в наших примерах — 25). Поэтому сумма чисел дополнительного набора делится на $k$ тогда и только тогда, когда делится на $k$ сумма чисел исходного набора. Это решает $б)$.

Рис. 5

Замечание. Задача $a)$ имеет и другое решение: можно непосредственно посчитать числа $N$ и $M$.

Лемма. Число наборов целых чисел $a_1, \ldots, a_m$ таких, что $0 \le a_1 \le \ldots \le a_m \le k$ равно $C^m_{k+m}$.

Доказательство. Рассмотрим набор $(b_1, \ldots, b_m)$ где $b_i = a_i + i : b_1 = a_1 +1, b_2 = a_2 +2 $ и т. д. Тогда, очевидно, $1 < b_1 < b_2 < \ldots < b_m \le k+m$, то есть $(b_1, \ldots, b_m)$ — произвольный возрастающий набор $m$ целых чисел их первых $k+m$ чисел. Число таких наборов равно $C^m_{k-m}$.

Поэтому число наборов, в которых $a_k \le k$, по лемме равно $C^k_{2k}$. Если же $a_k = k$, то нам остается выбрать числа $a_1, \ldots, a_{k-1}$ так, что $0 \le a_1 \le \ldots \le a_{k-1} \le k$; их число равно $C^{k-1}_{2k-1}$. Остается посчитать, что $2C^{k-1}_{2k-1}$ равно $C^k_{2k}$.

А. Толпыго

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *