5.3 Производная сложной и обратной функций

Теорема (о производной композиции). Пусть функция $f$ определена на интервале $I$ и дифференцируема в точке $x_0 ∈ I$, а функция $g$ определена на интервале $J ⊃ f(I)$ и дифференцируема в соответствующей точке $y_0 = f (x_0) ∈ J$. Тогда сложная функция $\varphi(x) = g(f(x))$ дифференцируема в точке $x_0$, причем $$\varphi'(x_0) = g'(f(x_0)) \cdot f'(x_0)$$

Так как функция $g$ дифференцируема в точке $y_0$,
то $$g(y)-g(y_0) = g'(y_0)\cdot (y-y_0)+r(y)\cdot (y-y_0),\quad\quad(5.1)$$ где $\displaystyle \lim_{y\to y_0}\, r(y)=0$. Доопределим функцию $r$ в точке $y_0$ по непрерывности, положив $r (y_0) = 0$. В равенстве (5.1) считаем, что $y = f(x)$. Тогда получим $$\varphi(x)-\varphi(x_0) = g'(y_0)(f(x)-f(x_0)) + r(f(x))(f(x)-f(x_0)).$$ Разделив это равенство на $x−x_0$ и устремив $x \to x_0$, получаем $$\displaystyle \lim_{x\to x_0}\, \frac{\varphi(x)-\varphi(x_0)}{x-x_0}=$$ $$=g'(f(x_0)) \displaystyle \lim_{x\to x_0} \, \frac{f(x)-f(x_0)}{x-x_0}+\displaystyle \lim_{x\to x_0} \, r(f(x))\frac{f(x)-f(x_0)}{x-x_0}.$$ Последний предел справа равен нулю, поскольку $\displaystyle \lim_{x\to x_0}\, r(f(x))=0$ (по теореме о непрерывности сложной функции) и $\displaystyle \lim_{x\to x_0}\, \frac{f(x)-f(x_0)}{x-x_0}=f'(x_0)$. Итак, получили, что $\varphi'(x_0) = g'(f(x_0))\cdot f'(x_0)$.

Теорема (о производной обратной функции). Пусть функция $f$ строго возрастает на интервале $I$, непрерывна на $I$, дифференцируема в точке $x_0 \in I$ и $f'(x_0)\neq 0$. Тогда обратная функция $g = f^{-1}$ дифференцируема в точке $y_0 = f(x_0)$, причём $g'(x_0) = \frac{1}{f'(x_0)}$.

Рассмотрим разностное отношение $\frac{g(y)-g(y_0)}{y-y_0}$. Обозначим $x=g(y)$. Тогда $y=f(x)$ и $$\frac{g(y)-g(y_0)}{y-y_0}=\frac{x-x_0}{f(x)-f(x_0)}.$$ Поскольку функция $g$ непрерывна (в силу теоремы о непрерывности обратной функции), то при $y\to y_0$ имеем $x=g(y)\to g(y_0) = x_0$, и поэтому $$\displaystyle \lim_{y\to y_0}\,\frac{g(y)-g(y_0)}{y-y_0}=\frac{1}{\displaystyle \lim_{x\to x_0}\,\frac{f(x)-f(x_0)}{x-x_0}}=\frac{1}{f'(x_0)},$$ т. е. существует предел левой части и он равен $\frac{1}{f'(x_0)}$.

Практические задания
1. Найти производную обратной функции $g(y)=\arcsin x,\, -\frac{\pi}{2}\leqslant y \leqslant\frac{\pi}{2},\, -1\leqslant x\leqslant 1$.

Решение

Обратная функция к $g(y)$: $$f(x)=g^{-1}(y)=\sin y,$$
Пользуясь вышеописанными формулами и таблицей производных получаем: $$g'(y)=(\arcsin x)’ = \frac{1}{x’} = \frac{1}{\cos y}$$ Так как $-\frac{\pi}{2}\leqslant y \leqslant\frac{\pi}{2}$, то $\cos y > 0$, поэтому $\cos y=\sqrt{1-\sin^2 y}=\sqrt{1-x^2}$. Таким образом, $(\arcsin x)’=\frac{1}{\sqrt{1-x^2}}$.

2. Найти производную обратной функции $g(y)=\text{arctg x},\, -\frac{\pi}{2}\leqslant y \leqslant\frac{\pi}{2},\, -\infty <x< +\infty$

Решение

Обратная функция к $g(y)$: $$f(x)=g^{-1}(y)=\text{tg y}$$
Пользуясь вышеописанными формулами и таблицей производных имеем: $$g'(y)=(\text{arctg x})’=\frac{1}{f'(x)}=\cos^2 y=\frac{1}{1+\text{tg}^2 y}=\frac{1}{1+x^2};$$ итак, $(\text{arctg x})’=\frac{1}{1+x^2}$.

3. Найти производную сложной функции $y=\ln^2\arcsin \frac{1}{x},\, x>1$

Решение

Используя вышеприведённые формулы и таблицу производных получаем:$$y’=(\ln^2\arcsin\frac{1}{x})’=2\ln\arcsin\frac{1}{x}(\ln\arcsin\frac{1}{x})’=$$ $$=2\ln\arcsin\frac{1}{x}\frac{1}{\arcsin\frac{1}{x}}(\arcsin\frac{1}{x})’=$$ $$=2\frac{\ln\arcsin\frac{1}{x}}{\arcsin\frac{1}{x}}\frac{1}{\sqrt{1-\frac{1}{x^2}}}(\frac{1}{x})’=-\frac{2\ln\arcsin\frac{1}{x}}{|x|\sqrt{x^2-1}\arcsin\frac{1}{x}}$$

4. Найти производную сложной функции $y=\frac{1}{2a}\ln|\frac{x-a}{x+a}|,\, x\neq a,\, x\neq -a$.

Решение

Используя вышеприведённые формулы и таблицу производных получаем:$$y’=\frac{1}{2a}\frac{(\frac{x-a}{x+a})’}{\frac{x-a}{x+a}}=$$ $$=\frac{1}{2a}\frac{x+a}{x-a}\frac{x+a-(x-a)}{(x+a)^2}=\frac{1}{x^2-a^2}$$

Тестирование. Производная сложной и обратной функции

Пройдите тест для проверки понимания только что прочитанной темы

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *