М623. Задача об осях симметрии куба, правильной треугольной пирамиды и нечетности осей симметрии многогранника.

Задача из журнала «Квант» (1980 год, 5 выпуск)

Условие

а) Сколько осей симметрии имеет куб? Правильная треугольная пирамида?

б)* Докажите, что если некоторый многогранник имеет $k$ осей симметрии $(k \geq 1)$, то $k$ нечетно.

Решение

а) Нетрудно указать девять осей симметрии куба. Это — прямые, соединяющие центр куба $O$ с центрами граней (их три: $Ox$, $Oy$, $Oz$ на рисунке $1$) и с серединами ребер (их шесть).

Других осей симметрии у куба нет: это можно доказать, опираясь на такое наблюдение: при любом самосовмещении куба каждая из трех осей $Ox$, $Oy$, $Oz$ должна отображаться на одну из этих же осей, причем если это само совмещение — симметрия (поворот на $180 ^\circ$) $S_l$ относительно некоторой прямой $l$, отличной от $Ox$, $Oy$ и $ Oz$, то одна из этих трех осей должна переходить сама в себя, а две остальные — друг в друга.

У правильного тетраэдра три оси симметрии — прямые, соединяющие середины его ребер. Чтобы убедится в этом, удобно достроить тетраэдр до куба, проведя через каждое ребро тетраэдра плоскость, параллельную противоположному ребру (рис. $2$). Ясно, что любое самосовмещение тетраэдра будет также самосовмещением этого описанного куба. Из девяти осевых симметрий, отображающих куб на себя, лишь три будут переводить в себя тетраэдр.

б) Пусть дан многогранник $M$, у которого более одной оси симметрии.

Лемма $1$ Если $l$ и $m$ — оси симметрии многогранника $M$, то $S_l (m) = m’$ — также ось симметрии $М$.

В самом деле, если точки $P$ и $P’$ многогранника $M$ симметричны относительно $m$, то $S_l (P)$ и  $S_l (P’)$ будут симметричными относительно $m’$. Короче: $S_{m^{‘}}  = S_l O S_m O S_l$.

Лемма $2$ Если $l$ и $m$ — оси симметрии многогранника $M$, пересекающиеся в точке $O$ и перпендикулярные друг к другу, то прямая $n$, перпендикулярная им обоим и проходящая через точку $O$, также служит осью симметрии $M$.

Действительно, $S_n = S_m O S_l$. Это легко проверить, приняв данные прямые за оси координат, или построив прямоугольный параллелепипед с центром в точке $O$ и осями симметрии $l$, $m$, $n$ с произвольной вершиной $P$ (рис. $3$).

Леммы $1$ и $2$ позволяют, фиксировав какую-то одну ось симметрии $l$, разбить все остальные на пары: если $m$ удовлетворяет условия леммы $2$, то пару с ней образует $n$, а если нет, то $m’ = S_l(m) \ne m$. Отсюда сразу следует утверждение задачи б).

Возникает естественный вопрос: какое вообще (конечное) множество прямых может быть множеством всех осей симметрии некоторого многогранника?

Различные примеры даются множеством осей симметрии $n$-угольной правильной призмы (здесь количество осей $p=n$ при $n$ нечетном и $p=n+1$ при $n$ четном), тетраэдра (или прямоугольного параллелепипеда с разными ребрами, $p=3$), куба (или октаэдра $p=9$) и додекаэдра (или икосаэдра, $p=15$). Попробуйте доказать, что других множеств осей симметрии (состоящих более чем из одной прямой) не бывает. Конечно, тут не обойтись без такой очень полезной леммы, которую многие читатели применили и в решении задачи б).

Лемма $3$ Оси симметрии любого многогранника пересекаются в одной точке.

Предположим, что $l$, $m$ — непересекающиеся оси симметрии многогранника $M$. Пусть $n$ — общий перпендикуляр $l$, $m$; рассмотрим прямоугольную систему координат с началом в точке $O = l \cap n$, с осью $Oz$ направленной по лучу $OA$, где $A = n \cap m$; пусть $|OA| = a$. Тогда при симметрии относительно оси $l$ координата $z$ любой точки переходит в $(-z)$, а при симметрии относительно $m$ — в $(2a-z)$. Поэтому при композиции этих двух симметрий $z$ изменяется на $2a$. Повторяя эту композицию достаточное число раз, мы «выгоним» любую точку за пределы многогранника $M$.  Противоречие!

Вот еще более короткое доказательство леммы $3$ (правда, использующее понятие, заимствованное из механики): пусть $O$ — центр масс одинаковых грузиков, помещенных в вершинах многогранника $M$; ясно, что при любом самосовмещении многогранника $M$ грузики лишь меняются местами, поэтому точка $O$ переходит в себя; в частности, все оси симметрии многогранника $M$ проходят через точку $O$.

Н. Васильев, В. Сендеров, А. Сосинский