Преобразование Фурье (прямое и обратное)

1. Понятие преобразования Фурье и обратного преобразования Фурье. Пусть $f(x)$ есть комплекснозначная функция действительного переменного. Тогда преобразование Фурье функции $f(x)$ ( оно обозначается через $F[f]$ или $\hat{f}$) определяется формулой
$$\hat{f}(y)=F[f]=v.p.\intop_{-\infty}^{+\infty}f(x)e^{-iyx}dx\,(1)$$
Обратное преобразование Фурье(обозначается через $F^{-1}[f]$ или $\tilde{f}$) определяется формулой
$$\tilde{f}(y)=F^{-1}[f]=v.p.\frac{1}{2\pi}\intop_{-\infty}^{+\infty}f(x)e^{iyx}dx\,(2)$$
Предполагается, что интегралы (1) и (2) существуют. Если функция $f(x)$ абсолютно интегрируема, то несобственные интегралы $$\intop_{-\infty}^{+\infty}f(x)e^{-iyx}dx$$$$\intop_{-\infty}^{+\infty}f(x)e^{iyx}dx$$ существуют и совпадают с соответствующими интегралами в смысле главного значения. Поэтому для абсолютно интегрируемых функций преобразование Фурье и обратное преобразование Фурье определяется как следующие несобственные интегралы:
$$F[f]=\intop_{-\infty}^{+\infty}f(x)e^{-iyx}dx$$
$$F^{-1}[f]=\frac{1}{2\pi}\intop_{-\infty}^{+\infty}f(x)e^{iyx}dx$$

2. Свойства преобразования Фурье абсолютно интегрируемых на $\mathbb{R}$ функций.

Лемма 1. Преобразование Фурье абсолютно интегрируемой на $\mathbb{R}$ функции есть ограниченная и непрерывная на $\mathbb{R}$ функция.

Так как функция $f(x)$ абсолютно интегрируема на $\mathbb{R}$, то
$$\left|\hat{f}(y)\right|=\left|\intop_{-\infty}^{+\infty}f(x)e^{iyx}dx \right| \leq\intop_{-\infty}^{+\infty} \left| f(x)\right|dx= C_{0}$$ Cледовательно, $\hat{f}(y)$ есть ограниченная функция на $\mathbb{R}$. Для доказательства непрерывности функции $\hat{f}(y)$ запишем её в виде

$$\hat{f}(y)=\intop_{-\infty}^{+\infty}f(x)\cos{(yx)}dx$$ $$-i\intop_{-\infty}^{+\infty}f(x)\sin{(yx)}dx=$$ $$a(y)-ib(y)$$

и заметим, что, в силу леммы, функции $a(y)$ и $b(y)$ непрерывны на $\mathbb{R}$.

Теорема 1. Если функция $f(x)$ абсолютно интегрируема на $\mathbb{R}$ и имеет в каждой точке конечную производную $f'(x)$, то справедливы формулы обращения

$$F^{-1}\left[F\left[f\right]\right]=f,$$ $$F\left[F^{-1}\left[f\right]\right]=f \,(5)$$

Так как выполнены условия теоремы, то справедливо равенство

$$f(x)=\frac{1}{2\pi}\intop_{-\infty}^{+\infty}dy \intop_{-\infty}^{+\infty}f(t)\cos{(y(x-t))}dt=$$

$$=\intop_{-\infty}^{+\infty}(a(y)cos{(yx)}+b(y)\sin{(yx)}dy$$

а следовательно, и равенства (4) и (5), которые, применяя обозначения (1) и (2), можно записать в виде (5).

Преобразование Фурье

Проверьте свои знания.

 

Литература

 

Интегралы в смысле главного значения . Комплексная форма интеграла Фурье

Пусть функция $f(x): \mathbb{R}\rightarrow \mathbb{R}$ абсолютно интегрируема на любом конечном отрезке $[a,b]$.
Если существует конечный предел
$$ \lim_{N \rightarrow \infty}\intop_{-N}^{N} f(x)\,dx,$$
то этот предел будем называть интегралом в смысле главного значения и обозначать через $$v.p.\intop_{-\infty}^{+\infty} f(x)\,dx.$$ Таким образом,
$$v.p.\intop_{-\infty}^{+\infty} f(x)\,dx=\lim_{N \rightarrow \infty}\intop_{-N}^{N} f(x)\,dx.$$
Если $$\intop_{-\infty}^{\infty} f(x)\,dx$$ сходящийся, то он существует и в смысле главного значения. Обратное утверждение неверно. Ясно, что для любой нечетной, абсолютно интегрируемой на любом конечном отрезке функции интеграл от этой функции в смысле главного значения равен нулю.
Пусть функция $f(x)$ абсолютно интегрируема на отрезке$[a,\beta]$, содержащимся в отрезке $[a,b]$ и $c\overline{\in}[a,\beta]$, $c\in(a,b)$.
Тогда:
$$v.p.\intop_{a}^{b} f(x)\,dx=\lim_{\epsilon \rightarrow +0} \left[ \intop_{a}^{c-\varepsilon}f(x)\,dx — \intop_{c+\varepsilon}^{b}f(x)\,dx \right]$$
Пусть для абсолютно интегрируемой на $\mathbb{R}$ функции $f(x)$ справедливо представление в виде интеграла Фурье, т.е. $\forall x \in \mathbb{R}$ справедливо
$$f(x)=\frac{1}{2\pi}\intop_{-\infty}^{+\infty}\,dy \intop_{-\infty}^{+\infty}f(t)\cos{(y(x-t))}\,dt=$$

$$=\intop_{-\infty}^{+\infty}a(y)\cos{(yx)}\,dy+\intop_{-\infty}^{+\infty}b(y)\sin{(yx)}\,dy,(1)$$ где
$$a(y)=\frac{1}{2\pi}\intop_{-\infty}^{+\infty}f(t)\cos{(yt)}\,dt,$$ $$b(y)=\frac{1}{2\pi}\intop_{-\infty}^{+\infty}f(t)\sin{(yt)}\,dt.$$

Лемма 1. Если $f(x)$ — абсолютно итегрируемая на $\mathbb{R}$, то $a(y)$ и $b(y)$, непрерывны на $\mathbb{R}$.
Докажем непрерывность $a(y)$.
$$a(y)=\frac{1}{2\pi}\intop_{-\infty}^{+\infty}f(t)\cos{(yt)} \,dt$$
Из этого следует, что
$$\left|\triangle a(y)\right|=$$ $$=\left| a(y+\triangle y)-a(y)\right|\leq$$ $$\leq\frac{1}{\pi}\intop_{-\infty}^{+\infty}\left| f(t)\right|\left|\sin{(\frac{t\triangle y}{2})}\right|dt.(2)$$
Так как функция $f(t)$ абсолютно интегрируема, то интервал $(-\infty,+\infty)$ можно разбить на три таких интервала $(-\infty,-c)$,$(-c,c)$ и $(c,+\infty)$, что по бесконечным интервалам интегралы от функции
$\mid f(x) \mid$ меньше либо равны $\frac{\varepsilon}{3}$. Второй интеграл в формуле (2) меньше, чем
$$\frac{c}{2\pi}\mid \triangle y \mid \intop_{-c}^{c}\mid f(t) \mid\, dt,$$
и, следовательно $\exists\delta>0$что при $\mid \triangle y \mid < \delta$ второй интеграл в формуле(1) меньше $\frac{\varepsilon}{3}$. Из (*) следует, что при $\mid \triangle y \mid < \delta$
приращение $\mid \triangle a(y) \mid < \varepsilon$. Рассмотрим несобственный интеграл
$$K(y)=\intop_{-\infty}^{+\infty}f(t)\sin{(y(x-t))}\,dt=$$

$$=\intop_{-\infty}^{+\infty}f(t)(\sin{(yx)} \cos {(yt)}-\cos{(yx)}\sin{(yt)})\,dt=$$ $$=2\pi(a(y)\sin{(yx)}-b(y)\cos{(yx)}).$$
В силу леммы 1 функция $K(y)$ непрерывна на $\mathbb{R}$. Так как функция $K(y)$ нечетна, то
$$\frac{1}{2\pi}v.p.\intop_{-\infty}^{+\infty}K(y)\,dy=$$ $$=v.p.\intop_{-\infty}^{+\infty}\,dy\intop_{-\infty}^{+\infty}f(t)sin\,y(x-t)\,dt=0.(3)$$
Теорема 1. Если для абсолютно интегрируемой на $\mathbb{R}$ функции $f(x)$ справедливо $$f(x)=\frac{1}{2\pi}\intop_{-\infty}^{+\infty}\,dy \intop_{-\infty}^{+\infty}f(t)\cos{(y(x-t))}\,dt=$$

$$=\intop_{-\infty}^{+\infty}a(y)\cos{(yx)}\,dy+\intop_{-\infty}^{+\infty}b(y)\sin{(yx)}\,dy$$
то справедливо, что $$f(x)=v.p.\frac{1}{2\pi}\intop_{-\infty}^{+\infty}\left( \intop_{-\infty}^{+\infty}f(t)e^{-iyt}\,dt \right) e^{iyx}\,dy,(4)$$

$$f(x)=v.p.\frac{1}{2\pi}\intop_{-\infty}^{+\infty}\left( \intop_{-\infty}^{+\infty}f(t)e^{iyt}\,dt \right) e^{-iyx}\,dy.(5)$$
(4) получается умножением равенства (3) на мнимую единицу, сложить его с равенством (4) и воспользоваться формулами Эйлера
$$\cos{(y(x-t))}+I\sin{(y(x-t))}=e^{iy(x-t)}=e^{iyx}e^{-iyt}$$
Аналогично получается (5). Интеграл, стоящий в праваой части равенства (4), называется интегралом Фурье $f(x)$ в комплексной форме.

Замечание показать

Примеры

Пример 1.Представить интегралом Фурье в комплексной форме функцию$$ f(x)=\begin{cases}0,x<0\\h, 0 \leq x \leq \tau \\ 0, x>\tau \end{cases}$$

Решение показать

Пример 2. Представить интегралом Фурье в комплексной форме функцию $$f(x)=\begin{cases}-e^{-2x},x \geq0,\\2e^{x},x<0 \end{cases}$$

Решение показать

Интегралы в смысле главного значения

Рекомендуется пройти


 

Литература

М1476

Условие

Докажите, что не существует различных простых чисел p, q таких, что 2^{p}+1 делится на q, 2^{q}+1 делится на p.

Доказательство

Ясно, что p и q нечетны, и если одно из них равно 3, то другое тоже должно равняться 3. Поэтому будем в дальнейшем считать, что p>q>3.

Первое решение.

Из условия следует, что 2^{2p}\equiv1(\bmod m).
С другой стороны, согласно малой теореме Ферма, для простого q имеем: 2^{q-1}\equiv1(\bmod q).
Пусть n — найменьшее натуральное число такое, что 2^n=1(mod q). Тогда n\neq 2 — отличный от единицы делитель числа 2p. Значит, n=p либо n=2p, т.е. n не является делителем числа q-1. Противоречие.
Второе решение можно получить, опираясь на следующее утверждение.

Лемма 1

Пусть pq — простые числа, q\neq 3,2^{p}+1 делится на q. Тогда q=2kp+1, где k — натуральное число. Эту лемму легко доказать, заметив, что число n в первом решении равно 2p. Из нее следует, что q>p. Противоречие.
Еще одно решение можно получить, опираясь на такое утверждение.

Лемма 2

Если числа a и b взаимно просты, то НОД(2^{a}+1, 2^{b}+1)=1,

либо НОД(2^{a}+1, 2^{b}+1)=3
(причем второй случай имеет место тогда и только тогда, когда a и b нечетны).

Третье решение

Имеем:2^{p}+1 делится на q; 2^{q-1}-1, по малой теореме Ферма, также делится на q. Следовательно, и 2^{p-q+1}+1 делится на q — в противоречии с леммой 2.

Замечание.

Лемма 2 является частным случаем следующего несложного утверждения. Пусть НОД(m,n)=1, НОД(a,b)=d, НОД(m^{a}+n^{a}, m^{b}+n^{b})=d_{1}. Тогда d_{1}=m^{d}+n^{d}, если числа \frac{a}{d} и \frac{b}{d} оба нечетны; d_{1}=1 либо d_{1}=2 в противном случае (а именно: d_{1}=1, если m и n разной четности; d_{1}=2, если m и n нечетны).