Достаточные условия экстремума

Экстремумы функций одной переменной

Определение:

Функция f:\mathbb{E} \subset \mathbb{R}\rightarrow \mathbb{R}, имеет во внутренней точке x_{0}:

  • Локальный минимум, если \exists U(x_{0}):\forall x\in \dot {U}(x_{0}) f(x)\ge f(x_{ 0 })
  • Строгий локальный минимум, если \exists U(x_{0}):\forall x\in \dot {U}(x_{0}) f(x) > f(x_{ 0 })
  • Локальный максимум если \exists U(x_{0}):\forall x\in \dot {U}(x_{0}) f(x)\le f(x_{ 0 })
  • Строгий локальный максимум, если \exists U(x_{0}):\forall x\in \dot {U}(x_{0}) f(x) < f(x_{ 0 })

Поиск локальных и абсолютных экстремумов — важная практическая задача, породившая широкий спектр методов оптимизации. Изучение свойств и условий существования локального экстремума функций в одномерном случае создает прочный фундамент, упрощающий изучение аналогичного материала в анализе функций многих переменных.


Достаточные условия экстремума в терминах первой производной

Читать далее «Достаточные условия экстремума»

Достаточные условия экстремума функции двух переменных

Дифференциальное исчисление функций многих переменных — важный раздел анализа, имеющий немало приложений в физике, инженерии и прикладной математике. Существенное количество практических задач формулируется в терминах функций от двух переменных — явном выражении поверхностей в пространстве \mathbb{R}^{3}. В классических курсах анализа их изучают с более общих позиций, рассматривая достаточные критерии экстремума функций вида f: \mathbb{R}^{n} \rightarrow \mathbb{R} (также называемых скалярными полями), в терминах которых ведётся дальнейшее изложение.


Определение

Говорят, что функция f: \mathbb{E} \subset \mathbb{R}^{m} \rightarrow \mathbb{R} имеет во внутренней точке x_{0}

  • локальный минимум, если \exists U(x_{0}) \subset \mathbb{E}: \forall f(x) \le f(x_{0}).
  • локальный максимум, если \exists U(x_{0}) \subset \mathbb{E}: \forall f(x) \ge f(x_{0}).

Заменой неравенств на строгие получаем условия соответственно строгого локального минимума и максимума.


Определение

Якобианом векторного поля f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}, \forall x \in \mathbb{R}^{m} f(x) = (f_{1}(x),...,f_{m}(x)), дифференцируемого в точке x и непрерывного в некоторой её окрестности U(x) \in \mathbb{R}^{m}называют линейный оператор \mathbf{J}, описывающий наилучшее линейное приближение функции в некоторой окрестности точки x и имеющий матрицу вида:

$$ { J }_{ f }(x)=\begin{Vmatrix} \frac { \partial f_{ 1 } }{ \partial x_{ 1 } } (x) & \frac { \partial f_{ 1 } }{ \partial x_{ 2 } } (x) & … & \frac { \partial f_{ 1 } }{ \partial x_{ m } } (x) \\ \frac { \partial f_{ 2 } }{ \partial x_{ 1 } } (x) & \frac { \partial f_{ 2 } }{ \partial x_{ 2 } } (x) & … & \frac { \partial f_{2} }{ \partial x_{ m } } (x) \\ … & … & … & … \\ \frac { \partial f_{m} }{ \partial x_{ 1 } } (x) & \frac { \partial f_{m} }{ \partial x_{ 2 } } (x) & … & \frac { \partial f_{m} }{ \partial x_{ m }} (x) \end{Vmatrix} $$

— так называемую матрицу Якоби (матрица касательного отображения). Для скалярного поля матрица Якоби имеет вид:

$$ { J }_{ f }(x)=\begin{Vmatrix} \frac { \partial f }{ \partial x_{ 1 } } (x) & \frac { \partial f }{ \partial x_{ 2 } } (x) & … & \frac { \partial f }{ \partial x_{ m } } (x) \end{Vmatrix} $$

Определение

Гессианом скалярного поля f: \mathbb{R}^{m} \rightarrow \mathbb{R}, дважды дифференцируемого по всем аргументам в точке x=(x^{1},...,x^{m}) \in \mathbb{R}^{m}, называют симметрическую квадратичную форму H(x)=\sum _{ i=1 }^{ m }{ \sum _{ j=1 }^{ m }{ h_{ij}x_{i}x_{j} }  } , описывающую наилучшее квадратичное приближение функции в некоторой окрестности точки x и имеющую матрицу вида:

$$ \mathbf{H}_{f}(x) = \begin{Vmatrix} \frac { \partial ^{ 2 }f }{ \partial x_{ 1 }^{ 2 } } (x) & \frac { \partial ^{ 2 }f }{ \partial x_{ 1 }\partial x_{ 2 } } (x) & … & \frac { \partial ^{ 2 }f }{ \partial x_{ 1 }\partial x_{ m } } (x) \\ \frac { \partial ^{ 2 }f }{ \partial x_{ 2 }\partial x_{ 1 } } (x) & \frac { \partial ^{ 2 }f }{ \partial x_{ 2 }^{ 2 } } (x) & … & \frac { \partial ^{ 2 }f }{ \partial x_{ 2 }\partial x_{ m } } (x) \\ … & … & … & … \\ \frac { \partial ^{ 2 }f }{ \partial x_{ m }\partial x_{ 1 } } (x) & \frac { \partial ^{ 2 }f }{ \partial x_{ m }\partial x_{ 2 } } (x) & … & \frac { \partial ^{ 2 }f }{ \partial x_{ m }^{ 2 } } (x) \end{Vmatrix} $$

— так называемую матрицу Гессе, определитель которой обычно подразумевается под Гессианом. Матрица Гессе также описывает локальную кривизну скалярного поля.


Утверждение

Поведение функция f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}, дважды дифференцируемой в точке x=(x^{1},...,x^{m}) \in \mathbb{R}^{m} и непрерывной в некоторой окрестности U(x) \subset \mathbb{R} этой точки, характеризуется формулой:

$$ f(\mathbf{x}+\mathbf{\Delta x}) \approx f(x) + \mathbf{J(x)\Delta x} + \frac{1}{2} \mathbf{\Delta x^{T} H(x) \Delta x} $$

Достаточное условие экстремума в терминах частных производных

Для того, чтобы функция f: U(x_{0}) \rightarrow \mathbb{R}, дважды дифференцируемая по всем аргументам в точке x_{0}=(x_{0}^{1},...,x_{0}^{m}) \in \mathbb{R}^{m}, в ней имела экстремум достаточно, чтобы её Гессиан был знакоопределён, причем, положительная определённость влечёт наличие в точке строгого локального минимума, отрицательная определённость — строгого локального максимума.

Доказательство показать

Замечание 1

Условие не является необходимым, так как ничего не говорит о случае, когда квадратичная форма полуопределена, т.е. является и неположительна или неотрицательна, т.е. содержит критические точки, не являющиеся экстремальными, строго больше или меньше нуля на всех векторах окрестности.

Пример показать

Замечание 2

Функция может принимать экстремальные значения в граничных точках области определения. Вышеприведенное достаточное условие для их выявления использовать не рекомендуется, следует обратиться к аппарату теории условного экстремума.


Пример (Демидович, №3629)

Исследовать на локальный экстремум функцию

$$ z = x y \sqrt{1-\frac{x^2}{a^2}-\frac{y^2}{b^2}} \quad (a > 0, \quad b > 0) $$

Решение показать

Источники:

Закрепление материала.

Таблица лучших: Достаточные условия экстремума функции многих переменных

максимум из 23 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

М1473. О записи степеней двойки

Задача из журнала «Квант» (1995, выпуск №4)

Пусть c_{n} — первая цифра числа 2^{n} (в десятичной записи).

  1. Сколько единиц среди первых 1000 членов этой последовательности?
  2. Докажите, что в последовательности
    $$ c_{1}=2, \quad c_{2}=4, \quad c_{3}=8, \quad c_{4}=1, \quad c_{5}=3, \quad… $$

    встретится ровно 57 различных «слов» c_{k}c_{k+1}...c_{k+12} длины 13.

Решение

  1. Отметим на «логарифмической шкале» y=\log_{10}{x} числа x=2^{n} (каждая следующая отметка получается из предыдущей сдвигом на расстояние   \log_{10}{2}). Число x начинается с 1, если   10^{k} \le x < 2 \cdot 10^{k+1}   для некоторого k; соответствующие интервалы на рисунке 1 выделены красным (поскольку длина интервала как раз равна   \log_{10}{2}, на каждый из них попадает ровно одна отметка). Поскольку

    $$ \log_{10}{2} = 0.30103…, \quad 10^{301} \le 2^{1000} < 10^{302}, $$

    так что   2^{n}(n=0,1,2,...,1000)   ровно 301 раз перейдет через степень 10 и поэтому (не считая 2^{0}=1) 301-ый её член начинается с 1.

  2. line

  3. Чтобы более детально разобраться в закономерностях последовательности c_{n}, свернем логарифмическую шкалу y=\log{10}{x} в «логарифмический круг» z=y-\left[ y \right]: каждый отрезок от 10^k до 10^{k+1} даёт новый оборот круга, а точки 0=\log_{10}{1}, \quad \log_{10}{2}, \quad \log_{10}{3}, \quad ..., \quad \log_{10}{9} — границы интервалов, в которых расположены значения z, соответствующие различным первым значащим цифрам числа x от 1 до 9 (см. рисунок 2).

    log_circle

    Прежде чем решать задачу (2), объясним идею рассуждения на более простом примере: выясним, сколько разных пар \left( c_{k}, c_{k+1} \right) цифр встречается в нашей последовательности. Читать далее «М1473. О записи степеней двойки»