Представление функции интегралом Фурье

Интеграл Фурье как разложение в сумму гармоник

Интегральную формулу Фурье можно переписать следующим образом:
$$f\left(x\right)=\intop _{ 0 }^{ +\infty }{ \left[ a\left(\lambda \right)\cos { \lambda x } +b\left(\lambda \right)\sin { \lambda x } \right] d\lambda },\quad\left(\ast\right)$$ где
$$a\left(\lambda \right)=\frac { 1 }{ \pi } \intop _{ -\infty }^{ +\infty }{ f\left(\xi \right)\cos { \lambda \xi } d\xi } ,$$ $$b\left(\lambda \right)=\frac { 1 }{ \pi } \intop _{ -\infty }^{ +\infty }{ f\left(\xi\right)\sin { \lambda \xi } d\xi }.$$
Равенство $\left( \ast \right)$ аналогично разложению функции в тригонометрический ряд Фурье, а выражения $a\left(\lambda \right), b\left(\lambda \right)$ аналогичны формулам для коэффициентов Фурье.

Замечание. Для удобства дальнейших вычислений формула $\left(\ast\right)$ может быть упрощена, а именно:

  • Если $f\left(x\right)$ — чётная функция, то $$a\left(\lambda \right)=\frac { 2 }{ \pi } \intop_{ 0 }^{ +\infty }{ f\left(\xi\right)\cos { \lambda \xi } d\xi } ,$$ а $b\left(\lambda \right)$ принимает значение $0.$ Тогда формулу $\left(\ast\right)$ можно записать в виде $$f\left(x\right)=\frac { 2 }{ \pi } \intop_{ 0 }^{ +\infty }{ \cos { \lambda x } d\lambda } \intop_{ 0 }^{ +\infty }{ f\left(\xi\right)\cos { \lambda \xi } d\xi }.$$ Это выражение называется косинус-формулой Фурье.
  • Для нечётной $f\left(x\right)$ получаем соответственно, что $a\left(\lambda\right)$ обращается в нуль, а $$b\left(\lambda\right)=\frac { 2 }{ \pi } \intop_{ 0 }^{ +\infty }{ f\left(\xi\right)\sin { \lambda \xi } d\xi },$$ поэтому исходная формула приобретает вид $$f\left(x\right)=\frac { 2 }{ \pi } \intop_{ 0 }^{ +\infty }{ \sin { \lambda x } d\lambda } \intop_{ 0 }^{ +\infty }{ f\left(\xi\right)\sin { \lambda \xi } d\xi }.$$ Таким образом, мы получили синус-формулу Фурье.

Замечание. Интегральная формула Фурье имеет эквивалентную ей комплексную формулу интеграла Фурье $$f\left( x \right) =\frac { 1 }{ 2\pi } \int\limits _{ -\infty }^{ +\infty }{ d\lambda } \int _{ -\infty }^{ +\infty }{ f\left( \xi \right) { e }^{ i\lambda \left( x-\xi \right) }d\xi } .$$

Пример

Представить следующую функцию интегралом Фурье: $$f\left(x\right)=\begin{cases} 1,\quad если \quad \left| x \right| < 1; \\ 0,\quad если \quad \left| x \right| > 1. \end{cases}$$

Решение показать

Литература

Тестирование. Представление функции интегралом Фурье

Тесты помогут понять насколько хорошо был усвоен материал.

Определение интеграла Фурье

Для лучшего понимания материала, изложенного ниже, пожалуйста, ознакомьтесь с темой «Ряды Фурье».

Интегральная формула Фурье

Если интервал $\left[ -l,l \right],$ на котором функция $f\left(x\right)$ разлагается в тригонометрический ряд Фурье, неограниченно возрастает, т.е. $l\rightarrow +\infty,$ то ряд Фурье превращается в интеграл Фурье. При переходе к пределу происходит качественный скачок: функция, заданная на любом конечном интервале $\left[ -l,l \right],$ разлагается в ряд «гармонических колебаний», частоты которых образуют дискретную последовательность; функция $f\left(x\right),$ заданная на всей оси $x$ или на полуоси $x,$ разлагается в интеграл, который представляет собой сумму «гармонических колебаний», частоты которых непрерывно заполняют действительную полуось $0\le \lambda \le +\infty .$ Рассмотрим этот предельный переход от ряда Фурье к интегралу Фурье.

Замечание. Напомним, что функция $f$ является кусочно-гладкой на отрезке $\left[ a,b \right],$ если:

  • $f$ непрерывна во всех точках, кроме, быть может, конечного числа точек ${ x }_{ 1 },\dots ,{ x }_{ n }\in \left(a,b\right).$
  • $\forall i=1,\dots ,n \quad \exists f\left({ x }_{ i }\pm 0\right),\quad f\left(a+0\right),\quad f\left(b-0\right).$
  • $f$ – дифференцируема во всех точках, кроме, быть может, конечного числа точек ${ x }_{ 1 },\dots ,{ x }_{ n }.$
  • $\exists f^{ \prime }\left({ x }_{ i }\pm 0\right).$Пусть $f\left(x\right)$ задана на всей оси $x$ и на каждом конечном отрезке $\left[ -l,l \right],$ является кусочно-гладкой. Тогда, в силу основной теоремы о сходимости тригонометрического ряда Фурье, при любом $l>0$ $$f(x)=\frac { { a }_{ 0 } }{ 2 } +\sum _{ k=1 }^{ +\infty }{ \left( { a }_{ k }\cos { \frac { k\pi x }{ l } } +{ b }_{ k }\sin { \frac { k\pi x }{ l } } \right) } ,\quad \left( 1 \right) $$
    где $$\left(2\right)\quad \begin{cases} { a }_{ 0 }=\frac { 1 }{ l } \int\limits_{ -l }^{ l }{ f\left(\xi \right) } d\xi , \\ { a }_{ k }=\frac { 1 }{ l } \int\limits_{ -l }^{ l }{ f\left(\xi \right)\cos { \frac { k\pi \xi }{ l } d\xi , } } \\ { b }_{ k }=\frac { 1 }{ l } \int\limits_{ -l }^{ l }{ f\left(\xi \right)\sin { \frac { k\pi \xi }{ l } d\xi . } } \end{cases}$$
    Равенство $\left(1\right)$ имеет место, если $x$ — внутренняя точка отрезка $\left[ -l,l \right],$ в которой $f\left(x\right)$ непрерывна; если же $x$ — внутренняя точка этого отрезка, в которой $f\left(x\right)$ разрывна, то в левой части равенства $\left(1\right)$ $f\left(x\right)$ нужно заменить через $\frac { f\left(x+0\right)+f\left(x-0\right) }{ 2 }.$
    Подставляя выражения $\left(2\right)$ в $\left(1\right),$ получим $$f\left(x\right)=\frac { 1 }{ 2l } \intop_{ -l }^{ l }{ f\left(\xi \right)d\xi } +\frac { 1 }{ l } \sum _{ k=1 }^{ +\infty }{ \intop_{ -l }^{ l }{ f\left(\xi \right)\cos { \frac { k\pi }{ l } } \left(\xi -x\right)d\xi } }.\quad \left(3\right) $$
    Если $f\left(x\right)$ ещё и абсолютно интегрируема на всей оси $x,$ т.е. $$\intop_{ -\infty }^{ +\infty }{ \left| f\left(x\right) \right| dx } =Q<+\infty, \quad \left(4\right)$$
    то при переходе к пределу при $l\rightarrow +\infty$ первое слагаемое в правой части $\left(3\right)$ в силу условия $\left(4\right)$ стремится к нулю. Следовательно, $$f\left(x\right)=\lim _{ l\rightarrow +\infty }{ \frac { 1 }{ l } \sum _{ k=1 }^{ +\infty }{ \intop_{ -l }^{ l }{ f\left(\xi \right)\cos { \frac { k\pi }{ l } } \left(\xi -x\right)d\xi } . } } \quad \left(5\right)$$ Положим $\frac { k\pi }{ l } ={ \lambda }_{ k },$ $\frac { \pi }{ l } ={ \Delta \lambda }_{ k }.$ Тогда $\left(5\right)$ можно переписать в виде $$f\left( x \right) =\lim _{ \begin{matrix} l\rightarrow +\infty \\ \Delta { \lambda }_{ k }\rightarrow 0 \end{matrix} }{ \frac { 1 }{ \pi } } \sum _{ k=1 }^{ +\infty }{ \Delta { \lambda }_{ k } } \intop_{ -l }^{ l }{ f\left( \xi \right) \cos { { \lambda }_{ k } } \left( \xi -x \right) d\xi }.\quad \left( 6 \right) $$
    Будем рассуждать нестрого:

    1. при больших значениях $l$ интеграл $$\intop_{ -l }^{ l }{ f\left(\xi \right)\cos { { \lambda }_{ k } } \left(\xi -x\right)d\xi }$$ можно заменить интегралом
      $$\intop_{ -\infty }^{ +\infty }{ f\left(\xi \right)\cos { { \lambda }_{ k } } \left(\xi -x\right)d\xi },$$
    2. $$\sum _{ k=1 }^{ +\infty }{ \Delta { \lambda }_{ k } } \intop_{ -\infty }^{ +\infty }{ f\left(\xi \right)\cos { { \lambda }_{ k } } \left(\xi -x\right)d\xi } $$ является интегральной суммой для интеграла $$\intop_{ 0 }^{ +\infty }{ d\lambda } \intop_{ -\infty }^{ +\infty }{ f\left(\xi \right)\cos { { \lambda } } \left(\xi -x\right)d\xi } ,$$ поэтому из $\left(6\right)$ получаем $$f\left(x\right)=\frac { 1 }{ \pi } \intop_{ 0 }^{ +\infty }{ d\lambda } \intop_{ -\infty }^{ +\infty }{ f\left(\xi \right)\cos { { \lambda } } \left(\xi -x\right)d\xi } , \quad \left(7\right)$$ где в левой части равенства $\left(7\right)$ вместо $f\left(x\right)$ нужно писать $\frac { f\left(x+0\right)+f\left(x-0\right) }{ 2 } ,$ если $x$ является точкой разрыва функции $f\left(x\right).$

    Равенство $\left(7\right)$ называется интегральной формулой Фурье, а интеграл, стоящий в её правой части, — интегралом Фурье либо двойным интегралом Фурье

    Обоснование интегральной формулы Фурье

    Равенство $\left(7\right)$ было получено с помощью формальных предельных переходов, которые не были обоснованы.
    Вместо того чтобы их обосновать, удобнее непосредственно доказывать справедливость равенства $\left(7\right).$

    Теорема

    Если функция $f\left(x\right),$ кусочно-гладкая на каждом конечном отрезке оси $x,$ абсолютно интегрируема на всей оси $x,$ т.е. интеграл $\int\limits_{ -\infty }^{ +\infty }{ \left| f\left(x\right) \right| dx } $ сходится, то $$\lim _{ l\rightarrow +\infty }{ \frac { 1 }{ \pi } \intop_{ 0 }^{ l }{ d\lambda } \intop_{ -\infty }^{ +\infty }{ f\left(\xi \right)\cos { { \lambda } } \left(\xi -x\right)d\xi } } =\frac { f\left(x+0\right)+f\left(x-0\right) }{ 2 }.$$

    Доказательство показать

    Замечание. Основная теорема об интеграле Фурье справедлива и при более слабых ограничениях, налагаемых на функцию $f\left(x\right).$ А именно, если абсолютно интегрируемая на всей оси $x$ функция $f\left(x\right)$

    • кусочно-непрерывна на каждом конечном отрезке оси $x$
    • отношение $\left| \frac { f\left(x+\zeta \right)-f\left(x+0\right) }{ \zeta } \right|$ ограничено при любом фиксированном $x$ для всех достаточно малых $\zeta,$ то основная теорема сохраняет силу.
    Доказательство показать

    Литература

    Тестирование. Интеграл Фурье

    После прочтения материала настоятельно рекомендую попробовать силы в несложных тестах для закрепления материала.
    Желаю успехов!

M567. О разбиении единичного отрезка на $p+q$ равных отрезков

Задача из журнала «Квант» (1979, №6)

Условие

Натуральные числа $p$ и $q$ взаимно просты. Отрезок $\left[ 0;1 \right]$ разбит на $p+q$ одинаковых отрезков (рис. $1$). Докажите, что в каждом из этих отрезков, кроме двух крайних, лежит ровно одно из $p+q-2$ чисел $\frac { 1 }{ p } , \frac { 2 }{ p }, \dots \frac { p-1 }{ p }, \frac { 1 }{ q }, \frac { 2 }{ q }, \dots \frac { q-1 }{ q }$.

567-1

Решение

Приведём два решения.

Первое решение. Из условия следует, что каждое из чисел $p$ и $q$ взаимно просто с числом $n=p+q$, поэтому никакие две из точек $\frac { i }{ p } ,\frac { j }{ q } ,\frac { k }{ n } $ (отличные от $0$ и $1$) не совпадают. Поскольку $\frac { 1 }{ p } >\frac { 1 }{ n } $ и $\frac { 1 }{ q } >\frac { 1 }{ n } $, любые две из точек $\frac { i }{ p } $ лежат в разных отрезках $\left[ \frac { k }{ n } ;\frac { k+1 }{ n } \right] $ и любые две из точек $\frac { j }{ q } $ — тоже. Нужно лишь доказать, что какие-то две точки $\frac { i }{ p } $ и $\frac { j }{ q } $ не могут попасть в один и тот же отрезок $\left[ \frac { k }{ n } ;\frac { k+1 }{ n } \right]$ $\left( k=1,2,\dots,n-2 \right)$. Но это сразу следует из того, что дробь $\frac { k }{ n } =\frac { i+j }{ p+q } $ лежит между $\frac { i }{ p } $ и $\frac { j }{ q } $ (см., например, рисунок $2$: угловой коэффициент диагонали параллелограмма заключён между угловыми коэффициентами его сторон*).

M567-2

Второе решение. Нарисуем на клетчатой бумаге прямоугольник размерами $p\times q$ клеток и проведём в нём диагональ $OE$ (рис. $3$) — она и будет играть роль отрезка $\left[ 0;1 \right] $ нашей задачи. Линии одного направления (синие) делят её на $p$ равных частей, другого (красные) — на $q$ равных частей. Проведём через вершины клеток ещё ряд параллельных прямых — под углом $45^{\circ}$ к линиям сетки (на рисунке это — чёрные прямые $x+y=k$, где $k=1,2,\dots,p+q-1.$ Они делят $\left[ OE \right] $ на $n=p+q$ одинаковых отрезков. Утверждение задачи теперь становятся почти очевидным. В самом деле, на $\left[ OE \right] $ между любыми двумя сине-красными точками обязательно лежит чёрная точка: ведь, пересекая какую-то клетку, $\left[ OE \right] $ обязательно пересекает и её чёрную диагональ. (Можно вместо этого сказать и так: между любыми двумя точками пересечения $\left[ OE \right] $ с соседними чёрными прямыми лежит точка пересечения с синей или красной линией.)

В этом решении взаимная простота чисел $p$ и $q$ гарантирует, что $\left[ OE \right] $ не проходит через узлы сетки, отличные от $0$ и $E$ (глядя на наш маленький рисунок, в этом можно усомниться).

M567-3

Задача М567 допускает замечательное обобщение. Пусть $\alpha$ и $\beta $ — любые положительные числа, связанные соотношением $\frac { 1 }{ \alpha } +\frac { 1 }{ \beta } =1$. Отметим на числовой оси всевозможные числа вида $i\alpha $ и $j\beta \left( i\in Z,j\in Z \right)$. Тогда каждый отрезок $\left[ k;k+1 \right]$ оси $\left( k\in Z \right)$, ни в один из концов которого не попало отмеченное число, содержит ровно одно из отмеченных чисел $i\alpha$, $j\beta$. Наша задача эквивалента этому факту при рациональных $\alpha$ и $\beta$: нужно взять $\alpha =\frac { n }{ p } , \beta =\frac { n }{ q } $ (роль отрезка $\left[ 0;1 \right] $ будет играть теперь отрезок $\left[ 0;n \right])$. Этот же факт (для иррациональных $\alpha$ и $\beta$) упоминался недавно в решении задачи М538 («Квант», 1979, № $11$), очень похожем на наше второе решение М567.

Н.Васильев


(*) Тот факт, что «медианта» двух дробей $\frac { i }{ p }$ и $\frac { j }{ p }$ лежит между ними, использовался в статье «Близкие дроби» («Квант», 1975, №8).