7.6 Теоремы о среднем

Теорема 1 (первая теорема о среднем значении). Пусть функции $f$ и $g$ интегрируемы на $[a,b].$ Причем функция $g$ не меняет знак на $[a,b].$ Пусть $m=\displaystyle\inf_{x \in [a,b]}f(x), M = \displaystyle\sup _{x \in [a,b]}f(x).$ Тогда найдется такое число $\mu \in [m, M]$, что $$\int^b_a f(x)g(x)dx= \mu \int^b_a g(x)dx.$$

Геометрический смысл первой теоремы о среднем

Можем считать, что $a < b,$ т. к. если поменять местами $a$ и $b,$ то знаки обеих частей равенства поменяются на противоположные. Пусть $g(x) \ge 0.$ Неравенство $m \le f(x) \le M$ умножим на $g(x)$ и проинтегрируем от $a$ до $b.$ В силу монотонности и линейности интеграла получим $$m \int^b_a g(x)dx \le \int^b_a f(x)g(x)dx \le M \int^b_a g(x)dx.$$ Если $\int^b_a g(x)dx=0,$ то из этого неравенства видно, что утверждение теоремы справедливо при любом $\mu.$ Если же $\int^b_a g(x)dx>0,$ то положим $$\mu = \frac{\int^b_a f(x)g(x)dx}{\int^b_a g(x)dx}.$$ Тогда из полученного выше неравенства следует, что $m \le \mu \le M,$ и теорема доказана.

Случай $g(x) \le 0$ рассматривается аналогично.

Следствие. Если в условиях теоремы 1 функция $f$ непрерывна на $[a,b],$ то найдется такая точка $\xi \in [a,b],$ что $$\int^b_a f(x)g(x)dx = f( \xi )\int^b_a g(x)dx.$$ Действительно, в этом случае, по теореме Больцано — Коши о промежуточном значении, число $\mu$ является значением функции $f$ в некоторой точке $\xi \in [a,b].$

Лемма. Пусть функция $g$ интегрируема на отрезке $[a,b].$ Тогда функция $G(x)\equiv \int^x_a g(t)dt (a \le x \le b)$ равномерно непрерывна на $[a,b].$

Пусть $ x^{\prime}, x^{\prime\prime} \in [a,b], x^{\prime} < x^{\prime\prime}.$ Тогда $$G(x^{\prime\prime}) — G(x^{\prime}) = \int^{x^{\prime\prime}}_a g(t)dt — \int^{x^{\prime}}_a g(t)dt =$$ $$= \int^{x^{\prime}}_a g(t)dt + \int^{x^{\prime\prime}}_{x^{\prime}} g(t)dt — \int^{x^{\prime}}_a g(t)dt = \int^{x^{\prime\prime}}_{x^{\prime}} g(t)dt.$$ Поскольку $g$ интегрируема, то она ограничена, т. е. существует такое $M$, что $|g(t)| \le M$ для всех $t \in [a,b]$. Поэтому получаем $$|G(x^{\prime\prime}) — G(x^{\prime})| \le \int^{x^{\prime\prime}}_{x^{\prime}} |g(t)|dt \le M(x^{\prime\prime} — x^{\prime}).$$ Отсюда следует, что функция $G$ равномерно непрерывна на $[a,b].$

Теорема 2 (вторая теорeма о среднем значении). Пусть функции $f$ и $g$ интегрируемы на $[a,b],$ причем функция $f$ монотонна на $[a,b].$ Тогда существует точка $\xi \in [a,b],$ такая, что$$ \int^b_a f(x)g(x)dx = f(a) \int^{\xi}_a g(x)dx + f(b) \int^b_{\xi} g(x)dx. \qquad \qquad (7.3)$$

Геометрический смысл второй теоремы о среднем

Сначала предположим, что $f$ убывает на $[a,b]$ и неотрицательна. Возьмем произвольное разбиение $a = x_0 < x_1 < \cdots < x_n = b$ отрезка $[a,b].$ Тогда, по свойству аддитивности интеграла, $$I \equiv \int^b_a f(x)g(x)dx = \sum_{i=0}^{n-1} \int ^{x_{i+1}}_{x_i} f(x)g(x)dx =$$ $$ = \sum_{i=0}^{n-1} f(x_i) \int ^{x_{i+1}}_{x_i} g(x)dx +$$ $$+ \sum_{i=0}^{n-1} \int^{x_{i+1}}_{x_i} [f(x) — f(x_i)]g(x)dx \equiv I’ + \rho.$$ Для оценки суммы $\rho$ воспользуемся тем, что интегрируемая функция $g$ ограничена, т.е. существует такое $M,$ что $|g(x)| \le M, x \in [a,b].$ Тогда получим $$| \rho | \le \sum^{n-1}_{i=0} \int^{x_i+1}_{x_i} |f(x) — f(x_i)||g(x)|dx \le M \sum^{n-1}_{i=0} \omega_i \Delta x_i, $$ где $\omega_i$ — колебания функции $f$ на $[x_i,x_{i+1}]$. Правая часть стремится к нулю при стремлении к нулю диаметра разбиения в силу критерия интегрируемости Римана. Следовательно, сумма $I^{\prime}$ стремится к интегралу $I$. Оценим $I^{\prime}$. Для этого обозначим $G(x) = \int^x_a g(t)dt.$ Получим $$I^{\prime} = \sum^{n-1}_{i=0} f(x_i)[G(x_{i+1}) — G(x_i)] = \sum^{n-1}_{i=0} f(x_i)G(x_{i+1}) -$$ $$- \sum^{n-1}_{i=0} f(x_i)G(x_i) = \sum^{n}_{i=1} f(x_{i-1})G(x_i) — \sum^{n-1}_{i=1} f(x_i)G(x_i) =$$ $$=f(x_{n-1})G(x_n) + \sum^{n-1}_{i=1} [f(x_{i-1}) — f(x_i)]G(x_i).$$ Мы воспользовались равенством $G(x_0) = G(a) = 0.$

Обозначим через $L$ и $U$ соответственно нижнюю и верхнюю грани функции $G$ на $[a,b].$ Поскольку, в силу леммы, функция $G$ непрерывна на $[a,b],$ то они существуют в силу первой теоремы Вейерштрасса. Учитывая также, что функция $f,$ по предположению, неотрицательна и монотонно убывающая, т.е. $f(x_{i-1} — f(x_i) \ge 0,$ получаем следующее неравенство: $$L \left[ f(x_{n-1}) + \sum^{n-1}_{i=1} [f(x_{i-1}) — f(x_i)] \right] \le $$ $$ \le I’ \le U \left[ f(x_{n-1}) + \sum^{n-1}_{i=1} [f(x_{i-1}) — f(x_i)] \right].$$ При этом мы использовали неравенство $L \le G(x_i) \le U.$ Поскольку, как легко видеть, сумма в квадратных скобках равна $f(x_0) = f(a),$ то полученное неравенство принимает вид $Lf(a) \le I^{\prime} \le Uf(a).$ Но поскольку $I^{\prime} \to I$ при $d(\Pi) \to 0,$ то отсюда получаем $Lf(a) \le I \le Uf(a).$ Разделив это неравенство на $f(a) > 0,$ получим $L \le \frac{I}{f(a)} \le U.$ Но поскольку функция $G$ непрерывна на $[a,b]$ в силу леммы, то найдется точка $\xi \in [a,b],$ такая, что $G(\xi) = \frac{I}{f(a)}.$ Отсюда следует, что $I = f(a)G(\xi),$ а учитывая определение функции $G,$ получаем равенство $$\int^b_a f(x)g(x)dx = f(a) \int^{\xi}_a g(x)dx \quad (\xi \in [a,b]). \qquad \qquad (7.4)$$

Итак, равенство $(7.4)$ доказано нами в предположении, что функция $f$ убывает и неотрицательна. Рассмотрим теперь случай, когда $f$ убывает на $[a,b].$ Положим $\overline{f}(x) = f(x) -f(b).$ Тогда $\overline{f}$ убывает и неотрицательна. По доказанному, найдется точка $\overline{\xi},$ такая, что $$\int^b_a \overline{f}(x)g(x)dx = \overline{f}(a) \int^{\overline{\xi}}_a g(x)dx \quad (\overline{\xi} \in [a,b]).$$ Учитывая, что $\overline{f}(x) = f(x) — f(b),$ отсюда получаем $$\int^b_a [f(x) — f(b)]g(x)dx = [f(a) — f(b)] \int^{\overline{\xi}}_a g(x)dx,$$ или, тоже самое, $$\int^b_a f(x)g(x)dx = f(a) \int^{\overline{\xi}}_a g(x)dx + f(b) \int^b_a g(x)dx -$$ $$-f(b)\int^{\overline{\xi}}_a g(x)dx = f(a) \int^{\overline{\xi}}_a g(x)dx + f(b) \int^b_{\overline{\xi}} g(x)dx.$$ Этим доказано равенство $(7.3).$

В случае когда функция $f$ возрастает и неотрицательна на $[a,b],$ аналогично тому, как было доказано равенство $(7.4),$ можно показать что существует такая точка $\xi,$ что $$\int^b_a f(x)g(x)dx = f(b)\int^b_{\xi} g(x)dx. \qquad \qquad \qquad (7.5)$$ Далее, из $(7.5)$ легко можно получить $(7.3)$ точно так же, как и $(7.3)$ было получено из $(7.4).$

Замечание.

Формулы $(7.3) -(7.5)$ называются формулами Бонне. В этих равенствах точки $\xi,$ вообще говоря, разные. В самом деле, мы можем изменить функцию $f$ в точках $a$ и $b,$ сохранив при этом монотонность функции $f$. При этом левая часть $(7.3)$ не изменится, а изменение множителей $f(a)$ и $f(b)$ перед интегралами справа в $(7.3),$ очевидно, повлечет изменение значения $\xi$ справа в $(7.3).$

Вторую теорему о среднем иногда записывают в следующем виде: $$\int^b_a f(x)g(x)dx = f(a+0) \int^{\xi’}_a g(x)dx + f(b — 0) \int^b_{\xi’} g(x)dx.$$ В этом равенстве точка $\xi’,$ вообще говоря, не совпадает со значением $\xi$ в равенстве $(7.3).$

Примеры применения теорем о среднем

1.Найти $$ \lim_{n \to \infty} \int^{1}_{0} \frac{x^n}{1+x} dx.$$

Оценим $$0 \le \int^{1}_{0} \frac{x^n}{1+x}dx \le \int^{1}_{0} x^n dx = \frac{1}{n+1}.$$ Отсюда получаем $$ \lim_{n \to \infty} \int^{1}_{0} \frac{x^n}{1+x} dx = 0.$$

2.Найти $$ \lim_{n \to \infty} \int ^{\frac{\Pi}{2}}_{0} \sin^n xdx.$$

Зафиксируем $ \xi > 0.$ Тогда получим $$ \int^{\frac{\Pi}{2}}_{0} \sin^n xdx = \int^{\frac{\Pi}{2} — \frac{\xi}{2}}_{0} \sin^n xdx + \int^{\frac{\Pi}{2}}_{\frac{\Pi}{2} — \frac{\xi}{2}} \sin^n xdx \le$$ $$\le \left( \sin \left(\frac{\Pi}{2} — \frac{\xi}{2} \right) \right)^n \frac{\Pi}{2} + \frac{\xi}{2}.$$ Поскольку $ \sin \left( \frac{\Pi}{2} — \frac{\xi}{2} \right) < 1 ,$ то первое слагаемое справа стермится к нулю при $n \to \infty .$ Поэтому найдется такое $N,$ что для всех $n \ge N$ справедливо неравенство $$ \left( \sin \left( \frac{\Pi}{2} — \frac{\xi}{2} \right) \right)^n \frac{\Pi}{2} < \frac{\xi}{2}.$$ Итак, для заданного $\xi > 0$ мы нашли номер $N,$ начиная с которого $$\int^{\frac{\Pi}{2}_{0}} \sin^n xdx < \xi .$$ Это означает, что $$\lim_{n \to \infty} \int^{\frac{\Pi}{2}}_{0} \sin^n xdx = 0.$$

3. Оценить сверху $$I \equiv \int^{1}_{0} \frac{\sin x }{1 + x^2} dx.$$

Первый способ. Применяя первую теорему о среднем, получаем $$I = \frac{1}{1 + \xi^2} \int^{1}_{0} \sin x dx = \frac{1}{1 + \xi^2}(-\cos x) |^1_0 =$$ $$=\frac{1}{1 + \xi^2}(1 — \cos 1) \le 1 -\cos 1.$$

Второй способ. В силу первой теоремы о среднем имеем $$I = \sin \eta \int^1_0 \frac{dx}{1 + x^2} = \sin \eta \quad \text{arctg} x |^1_0 = \frac{\Pi}{4} \sin \eta \le \frac{\Pi}{4} \sin 1.$$

4. Оценить интеграл $$I \equiv \int^B_A \frac{\sin x}{x}dx, \quad 0 < A < B < +\infty .$$

Первый способ. Применим вторую теорему о среднем. Для этого обозначим $f(x) = \frac{1}{x}$ и $g(x) = \sin x.$ Функция $f$ монотонна на $[A,B],$ так что во второй формуле Бонне получаем $$I = \frac{1}{A} \int^{\xi}_{A} \sin xdx = \frac{1}{A} (-\cos x) \bigg|^{\xi}_{A} = \frac{1}{A}(\cos A — \cos \xi ).$$ Отсюда следует, что $|I| \le \frac{2}{A}$.

Второй способ. Применяя первую теорему о среднем, получим $$I = \sin \xi \int^B_A \frac{dx}{x} = \sin \xi ln \frac{B}{A}.$$ Отсюда следует, что $|I| \le ln \frac{B}{A}$.

5. Показать, что если $f \in R[a,b],$ где $R$ — класс интегрируемых на отрезке, $m = \displaystyle\inf_{[a,b]} f(x),$ $M = \displaystyle\sup_{[a,b]} f(x),$ то при условии непрерывности $f$ на $[a,b]$ найдется точка $\xi \in [a,b],$ такая что $\int^b_a f(x)dx = f(\xi )(b-a).$

Решение

Воспользуемся первой теоремой о среднем, тогда можем представить $$\int^b_a f(x)dx = \int^b_a f(x)g(x)dx,$$ где $g(x) =1,$ Тогда $$\int^b_a f(x)g(x)dx = f(\xi)\int^b_a 1dx = f(\xi)(b — a),$$

6. Найти среднее значение функции $y = x^2 -5x + 7$ на отрезке $[2,13].$

Решение

Воспользуемся выше упомянутой формулой и подставим в нее известные значения: $$ f(\xi) = \frac{\int^{13}_2 (x^2 — 5x + 7)dx}{13 — 2} = \frac{1}{11}\int^{13}_2 (x^2 -5x +7)dx =$$ Вычислим интеграл: $$ = \frac{1}{11} \left(\frac{x^3}{3} — 5\frac{x^2}{2} + 7x\right) \bigg|^{13}_2 = $$ Используем формулу Ньютона — Лейбница и найдем значение полученного выражения: $$ = \frac{1}{11}\left( \frac{13^3}{3} — 5\frac{13^2}{2} + 7 \cdot 13 — \left( \frac{2^3}{3} — 5\frac{2^2}{2} + 7\cdot 2 \right) \right) = $$ Упростим выражение и вычислим его результат: $$ = \frac{1}{11} \left( \frac{2197}{3} -\frac{845}{2} + 91 — \frac{8}{3} + 10 — 14 \right) = $$ $$ = \frac{1}{11} \left( \frac{2189}{3} — \frac{845}{2} + 87 \right) = \frac{1}{11} \cdot \frac{4378 — 2535 +522}{6} = \frac{2365}{66}$$ Получили среднее значение функции $y = x^2 -5x +7$ на отрезке $[2, 13]$ равным $\frac{2365}{66}$.

Смотрите также

Теоремы о среднем

Пройдите этот тест чтобы проверить свои знания по теме «теоремы о среднем».

M610. Об «интересных» наборах чисел

Задачa из журнала «Квант» (1980 год, 2 выпуск)

Условие

Фиксируем $k \in \mathbb N$.
$а)$ Рассмотрим множество всех наборов целых чисел $a_1, \ldots , a_k$ таких, что $0 \le a_1 \le a_2 \le \ldots \le a_k \le k$; обозначим число таких наборов через $N.$ Рассмотрим среди них те, для которых $a_k = k$; пусть их число равно $M$. Докажите, что $N=2M$.
$б)$ Наложим на рассматриваемые наборы дополнительное ограничение: сумма $a_1 + \ldots + a_k$ делится на $k$. Пусть соответствующие числа равны $N’$ и $M’$. Докажите, что $N’ = 2M’$ (Из рисунка 1 видно, что при $k=3$ эти числа равны $M=10$, $N=20$; $M’=4$, $N’=8$.)

Рис. 1.

Решение

Как известно, если два множества имеют одинаковое число элементов, между ними можно установить взаимно однозначное соответствие. Собственно говоря, это и есть определение того, что в множествах элементов поровну, но этот факт иногда забывается. А между тем довольно часто равенство двух чисел устанавливается именно через взаимно однозначное соответствие подходящих множеств.

Нам нужно доказать, что наборов, в которых $a_k = k$ ровно половина. Поэтому попробуем установить взаимно однозначное соответствие между этими наборами и оставшимися, теми, у которых $a_k < k$.

Сопоставить набору $(a_1, a_2, \ldots, a_k)$ набор $(a_k, a_{k-1}, \ldots, a_1)$ нельзя, так как новый набор — невозрастающий. Можно попробовать сопоставить набору $(a_1, \ldots, a_k)$ набор $k-a_k, k-a_{k-1}, \ldots, k-a_1)$: он уже — неубывающий, но… $k-a_1$ не обязательно быть меньше $k$. Поэтому это соответствие не решает задачу.

Значит, необходимо более сложное соответствие. Для его построения нам понадобится понятие диаграммы Юнга данного набора.

Рис. 2

Что это такое, проще всего объяснить на примере: набору $(0, 0, 2, 3, 5)$ соответствует диаграмма, изображенная на рисунке 2 — в каждой строке столько соответствующее число.

Дополним диаграмму Юнга до квадрата (рис. 3). Тогда становится ясно, что наша первоначальная идея заключалась в том, что отсчитывать диаграмму не из красных, а из белых квадратиков (и, соответственно, не слева-снизу, а справа-сверху).

Рис. 3

Попытаемся теперь дополнить рисунок 3 вертикальной диаграммой — как на рисунке 4. Отсчитывая эту диаграмму снизу-слева, получим набор $(2, 2, 3, 4, 4)$. Назовем этот набор дополнительным к набору $(0, 0 , 2, 3, 5)$. Еще один пример изображен на рисунке 5.

Ясно, что если исходный набор $(a_1, \ldots, a_k),$ а дополнительный — $(b_1, \ldots, b_k)$, то $(a_k = k)$ тогда и только тогда, когда $b_k < k$. В самом деле, $a_k = k$, если верхняя правая клетка входит в основную диаграмму Юнга, и $a_k < k,$ если она входит в дополнительную.

Рис. 4

Установленное нами соответствие между наборами, у которых $a_k = k$, и наборами, у которых $a_k < k$, очевидно, взаимно однозначно. Тем самым мы решили $a)$. Кроме того, сумма чисел исходного и дополнительного наборов равна $k^2$ (в наших примерах — 25). Поэтому сумма чисел дополнительного набора делится на $k$ тогда и только тогда, когда делится на $k$ сумма чисел исходного набора. Это решает $б)$.

Рис. 5

Замечание. Задача $a)$ имеет и другое решение: можно непосредственно посчитать числа $N$ и $M$.

Лемма. Число наборов целых чисел $a_1, \ldots, a_m$ таких, что $0 \le a_1 \le \ldots \le a_m \le k$ равно $C^m_{k+m}$.

Доказательство. Рассмотрим набор $(b_1, \ldots, b_m)$ где $b_i = a_i + i : b_1 = a_1 +1, b_2 = a_2 +2 $ и т. д. Тогда, очевидно, $1 < b_1 < b_2 < \ldots < b_m \le k+m$, то есть $(b_1, \ldots, b_m)$ — произвольный возрастающий набор $m$ целых чисел их первых $k+m$ чисел. Число таких наборов равно $C^m_{k-m}$.

Поэтому число наборов, в которых $a_k \le k$, по лемме равно $C^k_{2k}$. Если же $a_k = k$, то нам остается выбрать числа $a_1, \ldots, a_{k-1}$ так, что $0 \le a_1 \le \ldots \le a_{k-1} \le k$; их число равно $C^{k-1}_{2k-1}$. Остается посчитать, что $2C^{k-1}_{2k-1}$ равно $C^k_{2k}$.

А. Толпыго