12.8.2 Локальные экстремумы функций многих переменных

Определение. Пусть $f$ – действительная функция на открытом множестве $E \subset \mathbb{R}^{n}$. Говорят, что $f$ имеет локальный максимум в точке $x_{0} \in E$, если существует такая окрестность $U$ точки $x_{0}$, что для всех $x \in U$ выполняется неравенство $f\left(x\right) \leqslant f\left(x_{0}\right)$.

Локальный максимум называется строгим, если окрестность $U$ можно выбрать так, чтобы для всех $x \in U$, отличных от $x_{0}$, было $f\left(x\right) < f\left(x_{0}\right)$.

Определение
Пусть $f$ – действительная функция на открытом множестве $E \subset \mathbb{R}^{n}$. Говорят, что $f$ имеет локальный минимум в точке $x_{0} \in E$, если существует такая окрестность $U$ точки $x_{0}$, что для всех $x \in U$ выполняется неравенство $f\left(x\right) \geqslant f\left(x_{0}\right)$.

Локальный минимум называется строгим, если окрестность $U$ можно выбрать так, чтобы для всех $x \in U$, отличных от $x_{0}$, было $f\left(x\right) > f\left(x_{0}\right)$.

Локальный экстремум объединяет понятия локального минимума и локального максимума.

Теорема (необходимое условие экстремума дифференцируемой функции)
Пусть $f$ – действительная функция на открытом множестве $E \subset \mathbb{R}^{n}$. Если в точке $x_{0} \in E$ функция $f$ имеет локальный экстремум и дифференцируема в этой точке,то $$\text{d}f\left(x_{0}\right)=0.$$ Равенство нулю дифференциала равносильно тому, что все частные производные равны нулю, т.е. $$\displaystyle\frac{\partial f}{\partial x_{i}}\left(x_{0}\right)=0.$$

В одномерном случае это – теорема Ферма. Обозначим $\phi \left(t\right) = f \left(x_{0}+th\right)$, где $h$ – произвольный вектор. Функция $\phi$ определена при достаточно малых по модулю значениях $t$. Кроме того, по теореме о производной сложной функции, она дифференцируема, и ${\phi}’ \left(t\right) = \text{d}f \left(x_{0}+th\right)h$.
Пусть $f$ имеет локальный максимум в точкеx $0$. Значит, функция $\phi$ при $t = 0$ имеет локальный максимум и, по теореме Ферма, ${\phi}’ \left(0\right)=0$.
Итак, мы получили, что $df \left(x_{0}\right) = 0$, т.е. дифференциал функции $f$ в точке $x_{0}$ равен нулю на любом векторе $h$.

Определение
Точки, в которых дифференциал равен нулю, т.е. такие, в которых все частные производные равны нулю, называются стационарными. Критическими точками функции $f$ называются такие точки, в которых $f$ не дифференцируема, либо ее градиент равен нулю. Если точка стационарная, то из этого еще не следует, что в этой точке функция имеет экстремум.

Пример 1.
Пусть $f \left(x,y\right)=x^{3}+y^{3}$. Тогда $\displaystyle\frac{\partial f}{\partial x} = 3 \cdot x^{2}$,$\displaystyle\frac{\partial f}{\partial y} = 3 \cdot y^{2}$, так что $\left(0,0\right)$ – стационарная точка, но в этой точке у функции нет экстремума. Действительно, $f \left(0,0\right) = 0$, но легко видеть, что в любой окрестности точки $\left(0,0\right)$ функция принимает как положительные, так и отрицательные значения.

Пример 2.
У функции $f \left(x,y\right) = x^{2} − y^{2}$ начало координат – стационарная точка, но ясно, что экстремума в этой точке нет.

Теорема (достаточное условие экстремума).
Пусть функция $f$ дважды непрерывно-дифференцируема на открытом множестве $E \subset \mathbb{R}^{n}$. Пусть $x_{0} \in E$ – стационарная точка и $$\displaystyle Q_{x_{0}} \left(h\right) \equiv \sum_{i=1}^n \sum_{j=1}^n \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} \left(x_{0}\right)h^{i}h^{j}.$$ Тогда

  1. если $Q_{x_{0}}$ – знакоопределенная квадратичная форма, то функция $f$ в точке $x_{0}$ имеет локальный экстремум, а именно, минимум, если форма положительноопределенная, и максимум, если форма отрицательноопределенная;
  2. если квадратичная форма $Q_{x_{0}}$ неопределенная, то функция $f$ в точке $x_{0}$ не имеет экстремума.

Воспользуемся разложением по формуле Тейлора (12.7 стр. 292). Учитывая, что частные производные первого порядка в точке $x_{0}$ равны нулю, получим $$\displaystyle f \left(x_{0}+h\right)−f \left(x_{0}\right) = \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} \left(x_{0}+\theta h\right)h^{i}h^{j},$$ где $0<\theta<1$. Обозначим $\displaystyle a_{ij}=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} \left(x_{0}\right)$. В силу теоремы Шварца (12.6 стр. 289-290), $a_{ij}=a_{ji}$. Обозначим $$\displaystyle \alpha_{ij} \left(h\right)=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} \left(x_{0}+\theta h\right)−\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} \left(x_{0}\right).$$ По предположению, все частные производные второго порядка непрерывны и поэтому $$\lim_{h \rightarrow 0} \alpha_{ij} \left(h\right)=0. \left(1\right)$$ Получаем $$\displaystyle f \left(x_{0}+h\right)−f \left(x_{0}\right)=\frac{1}{2}\left[Q_{x_{0}} \left(h\right)+\sum_{i=1}^n \sum_{j=1}^n \alpha_{ij} \left(h\right)h_{i}h_{j}\right].$$ Обозначим $$\displaystyle \epsilon \left(h\right)=\frac{1}{|h|^{2}}\sum_{i=1}^n \sum_{j=1}^n \alpha_{ij} \left(h\right)h_{i}h_{j}.$$ Тогда $$|\epsilon \left(h\right)| \leq \sum_{i=1}^n \sum_{j=1}^n |\alpha_{ij} \left(h\right)|$$ и, в силу соотношения $\left(1\right)$, имеем $\epsilon \left(h\right) \rightarrow 0$ при $h \rightarrow 0$. Окончательно получаем $$\displaystyle f \left(x_{0}+h\right)−f \left(x_{0}\right)=\frac{1}{2}\left[Q_{x_{0}} \left(h\right)+\epsilon \left(h\right)|h|^{2}\right]. \left(2\right)$$ Предположим, что $Q_{x_{0}}$ – положительноопределенная форма. Согласно лемме о положительноопределённой квадратичной форме (12.8.1 стр. 295, Лемма 1), существует такое положительное число $\lambda$, что $Q_{x_{0}} \left(h\right) \geqslant \lambda|h|^{2}$ при любом $h$. Поэтому $$\displaystyle f \left(x_{0}+h\right)−f \left(x_{0}\right) \geq \frac{1}{2}|h|^{2} \left(λ+\epsilon \left(h\right)\right).$$ Так как $\lambda>0$, а $\epsilon \left(h\right) \rightarrow 0$ при $h \rightarrow 0$, то правая часть будет положительной при любом векторе $h$ достаточно малой длины.
Итак, мы пришли к тому, что в некоторой окрестности точки $x_{0}$ выполнено неравенство $f \left(x\right) >f \left(x_{0}\right)$, если только $x \neq x_{0}$ (мы положили $x=x_{0}+h$\right).  Это означает, что в точке $x_{0}$ функция имеет строгий локальный минимум, и тем самым доказана первая часть нашей теоремы.
Предположим теперь, что $Q_{x_{0}}$ – неопределенная форма. Тогда найдутся векторы $h_{1}$, $h_{2}$, такие, что $Q_{x_{0}} \left(h_{1}\right)=\lambda_{1}>0$, $Q_{x_{0}} \left(h_{2}\right)= \lambda_{2}<0$. В соотношении $\left(2\right)$ $h=th_{1}$ $t>0$. Тогда получим $$f \left(x_{0}+th_{1}\right)−f \left(x_{0}\right) = \frac{1}{2} \left[ t^{2} \lambda_{1} + t^{2} |h_{1}|^{2} \epsilon \left(th_{1}\right) \right] = \frac{1}{2} t^{2} \left[ \lambda_{1} + |h_{1}|^{2} \epsilon \left(th_{1}\right) \right].$$ При достаточно малых $t>0$ правая часть положительна. Это означает, что в любой окрестности точки $x_{0}$ функция $f$ принимает значения $f \left(x\right)$, большие, чем $f \left(x_{0}\right)$.
Аналогично получим, что в любой окрестности точки $x_{0}$ функция $f$ принимает значения, меньшие, чем $f \left(x_{0}\right)$. Это, вместе с предыдущим, означает, что в точке $x_{0}$ функция $f$ не имеет экстремума.

Рассмотрим частный случай этой теоремы для функции $f \left(x,y\right)$ двух переменных, определенной в некоторой окрестности точки $\left(x_{0},y_{0}\right)$ и имеющей в этой окрестности непрерывные частные производные первого и второго порядков. Предположим, что $\left(x_{0},y_{0}\right)$ – стационарная точка, и обозначим $$\displaystyle a_{11}= \frac{\partial^{2} f}{\partial x^{2}} \left(x_{0} ,y_{0}\right), a_{12}=\frac{\partial^{2} f}{\partial x \partial y} \left(x_{0}, y_{0}\right), a_{22}=\frac{\partial^{2} f}{\partial y^{2}} \left(x_{0}, y_{0}\right).$$ Тогда предыдущая теорема примет следующий вид.

Теорема
Пусть $\Delta=a_{11} \cdot a_{22} − a_{12}^2$. Тогда:

  1. если $\Delta>0$, то функция $f$ имеет в точке $\left(x_{0},y_{0}\right)$ локальный экстремум, а именно, минимум, если $a_{11}>0$, и максимум, если $a_{11}<0$;
  2. если $\Delta<0$, то экстремума в точке $\left(x_{0},y_{0}\right)$ нет. Как и в одномерном случае, при $\Delta=0$ экстремум может быть, а может и не быть.

Примеры решения задач

Алгоритм нахождения экстремума функции многих переменных:

  1. Находим стационарные точки;
  2. Находим дифференциал 2-ого порядка во всех стационарных точках
  3. Пользуясь достаточным условием экстремума функции многих переменных, рассматриваем дифференциал 2-ого порядка в каждой стационарной точке
  1. Исследовать функцию на экстремум $f \left(x,y\right) = x^{3} + 8 \cdot y^{3} + 18 \cdot x — 30 \cdot y$.
    Решение

    Найдем частные производные 1-го порядка: $$\displaystyle \frac{\partial f}{\partial x}=3 \cdot x^{2} — 6 \cdot y;$$ $$\displaystyle \frac{\partial f}{\partial y}=24 \cdot y^{2} — 6 \cdot x.$$ Составим и решим систему: $$\displaystyle \begin{cases}\frac{\partial f}{\partial x}= 0\\\frac{\partial f}{\partial y}= 0\end{cases} \Rightarrow \begin{cases}3 \cdot x^{2} — 6 \cdot y= 0\\24 \cdot y^{2} — 6 \cdot x = 0\end{cases} \Rightarrow \begin{cases}x^{2} — 2 \cdot y= 0\\4 \cdot y^{2} — x = 0\end{cases}$$ Из 2-го уравнения выразим $x=4 \cdot y^{2}$ — подставим в 1-ое уравнение: $$\displaystyle \left(4 \cdot y^{2}\right)^{2}-2 \cdot y=0$$ $$16 \cdot y^{4} — 2 \cdot y = 0$$ $$8 \cdot y^{4} — y = 0$$ $$y \left(8 \cdot y^{3} -1\right)=0$$ В результате получены 2 стационарные точки:
    1) $y=0 \Rightarrow x = 0, M_{1} = \left(0, 0\right)$;
    2) $\displaystyle 8 \cdot y^{3} -1=0 \Rightarrow y^{3}=\frac{1}{8} \Rightarrow y = \frac{1}{2} \Rightarrow x=1, M_{2} = \left(\frac{1}{2}, 1\right)$
    Проверим выполнение достаточного условия экстремума:
    $$\displaystyle \frac{\partial^{2} f}{\partial x^{2}}=6 \cdot x; \frac{\partial^{2} f}{\partial x \partial y}=-6; \frac{\partial^{2} f}{\partial y^{2}}=48 \cdot y$$
    1) Для точки $M_{1}= \left(0,0\right)$:
    $$\displaystyle A_{1}=\frac{\partial^{2} f}{\partial x^{2}} \left(0,0\right)=0; B_{1}=\frac{\partial^{2} f}{\partial x \partial y} \left(0,0\right)=-6; C_{1}=\frac{\partial^{2} f}{\partial y^{2}} \left(0,0\right)=0;$$
    $A_{1} \cdot B_{1} — C_{1}^{2} = -36<0$ , значит, в точке $M_{1}$ нет экстремума.
    2) Для точки $M_{2}$:
    $$\displaystyle A_{2}=\frac{\partial^{2} f}{\partial x^{2}} \left(1,\frac{1}{2}\right)=6; B_{2}=\frac{\partial^{2} f}{\partial x \partial y} \left(1,\frac{1}{2}\right)=-6; C_{2}=\frac{\partial^{2} f}{\partial y^{2}} \left(1,\frac{1}{2}\right)=24;$$
    $A_{2} \cdot B_{2} — C_{2}^{2} = 108>0$, значит, в точке $M_{2}$ существует экстремум, и поскольку $A_{2}>0$, то это минимум.
    Ответ: Точка $\displaystyle M_{2} \left(1,\frac{1}{2}\right)$ является точкой минимума функции $f$.

  2. Исследовать функцию на экстремум $f=y^{2} + 2 \cdot x \cdot y — 4 \cdot x — 2 \cdot y — 3$.
    Решение

    Найдём стационарные точки: $$\displaystyle \frac{\partial f}{\partial x}=2 \cdot y — 4;$$ $$\displaystyle \frac{\partial f}{\partial y}=2 \cdot y + 2 \cdot x — 2.$$
    Составим и решим систему: $$\displaystyle \begin{cases}\frac{\partial f}{\partial x}= 0\\\frac{\partial f}{\partial y}= 0\end{cases} \Rightarrow \begin{cases}2 \cdot y — 4= 0\\2 \cdot y + 2 \cdot x — 2 = 0\end{cases} \Rightarrow \begin{cases} y = 2\\y + x = 1\end{cases} \Rightarrow x = -1$$
    $M_{0} \left(-1, 2\right)$ – стационарная точка.
    Проверим выполнение достаточного условия экстремума: $$\displaystyle A=\frac{\partial^{2} f}{\partial x^{2}} \left(-1,2\right)=0; B=\frac{\partial^{2} f}{\partial x \partial y} \left(-1,2\right)=2; C=\frac{\partial^{2} f}{\partial y^{2}} \left(-1,2\right)=2;$$
    $A \cdot B — C^{2} = -4<0$ , значит, в точке $M_{0}$ нет экстремума.
    Ответ: экстремумы отсутствуют.

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме «Локальные экстремумы функций многих переменных».


Таблица лучших: Локальные экстремумы функций многих переменных

максимум из 4 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Литература:
См. Также:

Задача из журнала «Квант» (2007 год, выпуск 6) М2041, М2042, М2043

$\DeclareMathOperator{\ctg}{ctg} \DeclareMathOperator*{\tg}{tg}$

М2041

Задача

Какое наименьшее число ладей нужно поставить на шахматной доске $8\times8$, чтобы все белые клетки оказались под боем этих ладей?

Решение

Каждая ладья бьёт не более $8$ белых клеток ($4$ клетки — на одной горизонтали и $4$ клетки — на одной вертикали), поэтому все $32$ белые клетки побить менее чем четырьмя ладьями не удастся. Пример, когда четыре ладьи бьют все белые клетки, показан на рисунке.

Р.Женодаров
рис. 1

M2042

Задача

Докажите, что при $\displaystyle 0<x<\frac{\pi}{2}$ выполнено неравенство $\left(\tg {x}\right)^{\sin {x}}+ \left(\ctg {x}\right)^{\cos {x}}\geqslant 2$.

Решение

Пусть $\displaystyle a \in \left(0, \frac{\pi}{4}\right]$, $\displaystyle b \in \left[\frac{\pi}{4},\frac{\pi}{2}\right)$ и $\displaystyle a+b=\frac{\pi}{2}$. Тогда $\left(\tg {b}\right)^{\sin {b}}= \left(\ctg {a}\right)^{\cos {a}}$, $\left(\ctg {b}\right)^{cos {b}}= \left(\tg {a}\right)^{\sin {a}}$. Таким образом, если требуемое неравенство выполняется для $x=a$, то выполняется и для $x=b$; поэтому достаточно доказать неравенство для $\displaystyle x \in \left(0,\frac{\pi}{4}\right]$. Если $\displaystyle x \in \left(0,\frac{\pi}{4}\right]$, то $\left(\ctg {x}\right)\geqslant 1$, $\left(\cos {x}\right)\geqslant
\left(\sin {x}\right)$, поэтому $\displaystyle \left(\tg {x}\right)^{\sin {x}}+ \left(\ctg {x}\right)^{\cos {x}}\geqslant \left(\tg {x}\right)^{\sin {x}}+ \left(\ctg {x}\right)^{\sin {x}}= \left(\tg {x}\right)^{\sin {x}}+\frac{1}{\left(\tg {x}\right)^{\sin {x}}}=A+\frac{1}{A}$

$A>0$, т.к. $\left(\tg {x}\right)^{\sin {x}}>0$. Но $\displaystyle A+\frac{1}{A}= \left(\sqrt{A}-\frac{1}{\sqrt{A}}\right)^{2}+2\geqslant 2$.

Н.Агаханов, И.Богданов

M2043

Задача

Можно ли сконструировать такой набор «Юный паркетчик» из четырех одинаковых многоугольников и квадратика, чтобы из всех пяти деталей можно было сложить квадрат, а из трёх одинаковых деталей — равносторонний треугольник?

Решение

рис. 1

Опустив перпендикуляры из центра на стороны, разобьём правильный треугольник на три дельтоида (см. рис. 1). Из четырех таких дельтоидов можно составить квадрат, в котором недостаёт центрального квадратика.

О,Нечаева