5.7.2 Разложения основных элементарных функций

Формулу Тейлора с центром в точке $x_0 = 0$ называют формулой Маклорена
$$f(x) = f(0) + \frac{f’(0)}{1!}x + \frac{f’’(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n + \bar{o}\left(x^n\right) \ (x \to 0).$$

Построим разложения некоторых функций по формуле Маклорена.

  1. $f\left(x\right) = e^x$, $f’(x) = f’’(x) = \cdots = f^{(n)}(x) = e^x$, $f(0) = f’(0) = \cdots = f^{(n)}(0) = 1$. Поэтому получаем
    $$e^x = 1 + \frac{1}{1!}x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \cdots + \frac{1}{n!}x^n + \bar{o}\left(x^n\right) = \\ = \sum_{k=0}^n \frac{1}{k!}x^k + \bar{o}\left(x^n\right).$$
  2. $f(x) = \sin x$, $f’(x) = \cos x$, $f’’(x) = -\sin x$, $f’’’(x) = -\cos x$, $f^{(4)}(x) = \sin x$. Теперь легко видеть, что $f^{(k)}(x) = \sin{\left(x + \displaystyle\frac{k\pi}{2}\right)} \ \left(k = 0, 1, \ldots\right)$. Поэтому
    $$f^{(k)}(0) = \begin{cases} 0, \ k = 2s, \ s = 0, 1, \ldots, \\ \left(-1\right)^s, \ k = 2s+1, \ s=0, 1, \ldots . \end{cases}$$
    Таким образом, получаем
    $$\sin x = 0 + \frac{1}{1!}x + \frac{0}{2!}x^2 + \frac{-1}{3!}x^3 + \frac{0}{4!}x^4 + \frac{1}{5!} + \cdots + \\ +\left(-1\right)^n \frac{1}{\left(2n + 1\right)!}x^{2n + 1} + \frac{0}{\left(2n + 2\right)!}x^{2n + 2} + \bar{o}\left(x^{2n + 2}\right) = \\ = x — \frac{x^3}{3!} + \frac{x^5}{5!} — \cdots + \left(-1\right)^n\frac{x^{2n + 1}}{\left(2n + 1\right)!} + \bar{o}\left(x^{2n + 2}\right) = \\ = \sum_{k=0}^n \left(-1\right)^k \frac{x^{2k + 1}}{\left(2k + 1\right)!} + \bar{o}\left(x^{2n + 2}\right).$$
  3. $f\left(x\right) = \cos x$. Как и в предыдущем примере, легко убедиться в том, что $f^{(k)}\left(x\right) = \cos{\left(x + \displaystyle\frac{k\pi}{2}\right)} \ \left(k = 0, 1, \ldots\right)$. Отсюда
    $$f^{(k)}\left(0\right) = \begin{cases} \left(-1\right)^s, \ k = 2s, \\ 0, \ k = 2s + 1, \end{cases}$$ и тогда
    $$\cos x = 1 + \frac{0}{1!}x + \frac{-1}{2!}x^2 + \frac{0}{3!}x^3 + \frac{1}{4!}x^4 + \cdots + \\ + \frac{\left(-1\right)^n}{\left(2n\right)!}x^{2n} + \frac{0}{\left(2n + 1\right)!}x^{2n + 1} + \bar{o}\left(x^{2n + 1}\right) = \\ = 1 -\frac{x^2}{2!} + \frac{x^4}{4!} — \cdots + \left(-1\right)^n \frac{x^{2n}}{\left(2n\right)!} + \bar{o} \left(x^{2n + 1}\right) = \\ = \sum_{k=0}^n \left(-1\right)^k \frac{x^{2k}}{\left(2k\right)!} + \bar{o} \left(x^{2n + 1}\right).$$
  4. Функция $f(x) = \left(1 + x\right)^{\alpha} \ \left(\alpha \in \mathbb{R}\right)$ определена в окрестности нуля единичного радиуса. Имеем
    $$f’\left(x\right) = \alpha\left(1 + x\right)^{\alpha -1}, \ f’\left(0\right) = \alpha, \\ f’’\left(x\right) = \alpha\left(\alpha -1\right)\left(1 + x\right)^{\alpha -2}, \ f’’\left(0\right) = \alpha\left(\alpha -1\right), \ldots , \\ f^{(k)}\left(x\right) = \alpha\left(\alpha -1\right) \ldots \left(\alpha -k + 1\right) \left( 1 + x\right)^{\alpha -k}, \\ f^{(k)}\left(0\right) = \alpha \left(\alpha -1\right)\ldots \left(\alpha -k + 1\right).$$ Поэтому
    $$\left(1+x\right)^{\alpha} = 1 + \frac{\alpha}{1!}x + \frac{\alpha \left(\alpha -1\right)}{2!}x^2 + \frac{\alpha \left(\alpha -1\right) \left(\alpha -2\right)}{3!}x^3 + \ldots + \\ + \frac{\alpha \left(\alpha -1\right) \ldots \left(\alpha -n + 1\right)}{n!}x^n + \bar{o}\left(x^n\right) = \\ = 1 + \sum_{k=1}^n \frac{\alpha \left(\alpha -1\right) \ldots \left(\alpha -k + 1\right)}{k!}x^k + \bar{o} \left(x^n\right).$$
    В частности, если $\alpha = n$, то получим $$\left(1 + x\right)^n = 1 + nx + \frac{n\left(n -1\right)}{2!}x^2 + \ldots + x^n,$$ т. е. формулу бинома Ньютона. Если же $\alpha = -1$, то $$\frac{1}{1 + x} = 1 -x + x^2 -\ldots + \left(-1\right)^nx^n + \bar{o}\left(x^n\right)$$ — сумма геометрической прогрессии со знаменателем $-x$ и первым слагаемым, равным $1$.
  5. Функция $f(x) = \ln{\left(1 + x\right)}$ определена в окрестности нуля радиуса $1$. Имеем $f\left(0\right) = 0$,
    $$f’(x) = \frac{1}{1 + x}, \ f’\left(0\right) = 1, \\ f’’\left(x\right) = -\frac{1}{\left(1 + x\right)^2}, \ f’’\left(0\right) = -1, \\ f’’’\left(x\right) = \frac{2}{\left(1 + x\right)^3}, \ f’’’\left(0\right) = 2, \\ f^{(4)}\left(x\right) = \frac{-2\cdot 3}{\left(1 + x\right)^4}, \ f^{(4)}\left(0\right) = -2\cdot 3,\ldots , \\ f^{(k)}\left(x\right) = \frac{\left(-1\right)^{k -1}\left(k -1\right)!}{\left(1 + x\right)^k}, \ f^{(k)}\left(0\right) = \left(-1\right)^{k -1}\left(k -1\right)!, \ k = 1,2, \ldots$$
    Отсюда имеем $$\ln{\left(1 + x\right)} = x -\frac{x^2}{2} + \frac{x^3}{3} -\frac{x^4}{4} + \ldots + \left(-1\right)^{n -1}\frac{x^n}{n} + \bar{o}\left(x^n\right) = \\ = \sum_{k=1}^{n} \left(-1\right)^{k -1}\frac{x^k}{k} + \bar{o}\left(x^n\right).$$

Примеры решения практических заданий

  1. Вычислить предел $$I = \lim_{x \to 0} \displaystyle\frac{e^x \sin{x} -x\left(1 + x\right)}{x^3}.$$
    Решение

    Используя равенства $$e^x = 1 + x + \displaystyle\frac{x^2}{2} + \bar{o}\left(x^2\right), \ \sin{x} = x -\displaystyle\frac{x^3}{6} + \bar{o}\left(x^4\right),$$ получаем
    $$I = \lim_{x \to 0} \displaystyle\frac{\left(1 + x + \displaystyle\frac{x^2}{2} + \bar{o}\left(x^2\right)\right) \left(x -\displaystyle\frac{x^3}{6} + \bar{o}\left(x^4\right)\right) -x -x^2}{x^3} = $$ $$ = \lim_{x \to 0} \displaystyle\frac{x + x^2 + \displaystyle\frac{x^3}{2} -\displaystyle\frac{x^3}{6} + \bar{o}\left(x^3\right) -x -x^2}{x^3} = \displaystyle\frac{1}{3}.$$

  2. Вычислить предел $$I = \lim_{x \to 0} \frac{1 -\left(\cos{x}\right)^{\sin{x}}}{x^3}.$$
    Решение

    Поскольку $\sin{x} \ln{\cos{x}} \to 0 \ \left(x \to 0\right)$, то
    $$I = \lim_{x \to 0} \frac{1 -e^{\sin{x}\ln{cos{x}}}}{x^3} = \lim_{x \to 0} \frac{1 -\left(1 + \sin{x}\ln{\cos{x}} + \bar{o}\left(\sin{x}\ln{\cos{x}}\right)\right)}{x^3}.$$
    Воспользуемся следующими равенствами: $$\bar{o}\left(\sin{x}\ln{cos{x}}\right) = \bar{o}\left(x\left(\cos{x} -1\right)\right) = \bar{o}\left(x^3\right), $$ $$\sin{x} = x + \bar{o}\left(x^2\right), \ \ln{\cos{x}} = \ln{\left(1 + \left(\cos{x} -1\right)\right)} = $$ $$= \cos{x} -1 -\frac{\left(\cos{x} -1\right)^2}{2} + \bar{o}\left(\left(\cos{x} -1\right)^2\right) = -\displaystyle\frac{x^2}{2} + \bar{o}\left(x^3\right).$$
    Поэтому получим $$I = \lim_{x \to 0} \displaystyle\frac{-\left(x + \bar{o}\left(x^2\right)\right) \left(-\displaystyle\frac{x^2}{2} + \bar{o}\left(x^3\right)\right) + \bar{o}\left(x^3\right)}{x^3} = $$ $$ = \lim_{x \to 0} \displaystyle\frac{\displaystyle\frac{x^3}{2} + \bar{o}\left(x^3\right)}{x^3} = \displaystyle\frac{1}{2}.$$

  3. Вычислить предел $$I = \lim_{x \to + \infty}\left(\sqrt[6]{x^6 + x^5} -\sqrt[6]{x^6 -x^5}\right).$$
    Решение

    $$I = \lim_{x \to +\infty} \left(\sqrt[6]{x^6 + x^5} — \sqrt[6]{x^6 -x^5}\right) = \lim_{x \to +\infty} \left(x\sqrt[6]{1 + \frac{1}{x}} — x\sqrt[6]{1 — \frac{1}{x}}\right) = $$
    $$ = \lim_{x \to +\infty} x\left(\left(1 + \frac{1}{x}\right)^{\frac{1}{6}} -\left(1 -\frac{1}{x}\right)^{\frac{1}{6}}\right) = $$
    Воспользовавшись разложениями
    $$\left(1 + \frac{1}{x}\right)^{\frac{1}{6}} = 1 + \frac{1}{6x} -\frac{5}{72x^2} + \bar{o} \left(\frac{1}{x^2}\right)$$
    $$\left(1 -\frac{1}{x}\right)^{\frac{1}{6}} = 1 -\frac{1}{6x} -\frac{5}{72x^2} + \bar{o}\left(\frac{1}{x^2}\right)$$ получаем
    $$I = \lim_{x \to +\infty} x\left(\frac{1}{3x} + \bar{o}\left(\frac{1}{x^2}\right)\right) = \lim_{x \to +\infty} \left(\frac{1}{3} + \bar{o}\left(\frac{1}{x}\right)\right) = \frac{1}{3}$$

  4. Вычислить предел $$I = \lim_{x \to +0} \frac{a^x + a^{-x} -2}{x^2} \ \left(a > 0\right).$$
    Решение

    $$I = \lim_{x \to +0} \frac{a^x + a^{-x} -2}{x^2} = \lim_{x \to +0} \frac{e^{x\ln{a}} + e^{-x\ln{a}} -2}{x^2}$$
    Воспользовавшись следующими разложениями
    $$e^{x\ln{a}} = 1 + x\ln{a} + \frac{x^2}{2!}\ln^{2}{a} + \bar{o}\left(x^2\right), $$
    $$e^{-x\ln{a}} = 1 — x\ln{a} + \frac{x^2}{2!}\ln^{2}{a} + \bar{o}\left(x^2\right)$$ имеем

    $$I = \lim_{x \to +0} \left(\ln^{2}{a} + \bar{o}\left(1\right)\right) = \ln^{2}{a} \ \left(a > 0\right).$$

Разложения основных элементарных функций

Пройдите тест, чтобы проверить свои знания о разложениях основных элементарных функций

Таблица лучших: Разложения основных элементарных функций

максимум из 5 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

См. также:

Задача из журнала «Квант» (2001 год, 4 выпуск) М1762

Условие

Существует ли натуральное число $n$ такое, что $n$ имеет ровно $2000$ различных простых делителей и $2^n+1$ делится на $n$?

Решение

Докажем по индукции, что для любого натурального $k$ существует натуральное $n_k$, имеющее $k$ различных простых делителей, делящееся на $3$ и такое, что $2^{n_k}+1$ делится на $n_k$.

Для $k=1$ можно взять $n=3$. Пусть число $n_k=n$, кратное $3$, имеет $k$ различных простых делителей, причём $2^n+1$ делится на $n$.

Число $2^{3n}+1=\left(2^n+1\right)\left(2^{2n}-2n+1\right)$ делится на $3n$. Это следует из того, что $2^n+1$ делится на $n$, а
$$2^{2n}-2^n+1=\left(2^n-2\right)\left(2^n+1\right)+3\;\;\;(*)$$ делится на $3$ (поскольку при нечётном $n$ числа $2^n+1$ и $2^n-2$ делятся на $3$).

Далее, число $2^{2n}-2^n+1$ не делится на $9$, поскольку на $9$ делится произведение $\left(2^n-2\right)\left(2^n+1\right)$. Значит, поскольку $2^{2n}-2^n+1>3$ при $n>1$, то это число имеет при $n>1$ простой делитель $p>3$. Так как НОД $\left(2^n+1, 2^{2n}-2^n+1\right)=3$ (это тоже ясно из равенства $(*)$), то $p$ — не делитель $n$.

Из сказанного следует, что число $3pn$ имеет $k+1$ простой делитель, причём $2^{3pn}+1$ делится на $3pn$. Последнее следует, например из равенства
$$\left(2^{3n}\right)^p+1=\left(2^{3n}+1\right)\left(\left(2^{3n}\right)^{p-1}-\left(2^{3n}\right)^{p-2}+\cdots+1\right)$$

Для завершения решения достаточно положить $n_{k+1}=3pn=3pn_k$.

А.Егоров, В.Сендеров

Задача из журнала «Квант» (2001 год, 4 выпуск) М1759

Условие

Имеется остроугольный треугольник с меньшей стороной $c$ и противолежащим ей углом $\gamma$ . Известно, что треугольник можно раскрасить в два цвета так, что расстояние между любыми двумя точками одного цвета будет не больше $с$. Докажите, что $\gamma \geqslant 36^\circ$.

Решение

Рисунок к задачеРассмотрим треугольник $ABC$ с длинами сторон $AB=c$, $BC=a$, $CA=b$, причём $a \geqslant b \geqslant c$; углы при вершинах $A$, $B$ и $C$ обозначим соответственно через $\alpha$, $\beta$ и $\gamma$.

Пусть точка $K$ — середина стороны $BC$, точка $A_1$ — пересечение серединного перпендикуляра к $BC$ и стороны $AC$ (см. рисунок).

Из условия задачи следует, что в указанной раскраске вершины $B$ и $C$ должны быть разного цвета, поскольку расстояние между ними больше $c$ (если оно равно $c$, то треугольник равносторонний, и для него утверждение задачи выполняется). Значит, точка $A_1$ должна иметь одинаковый цвет с одной из точек $B$ или $C$.

В любом случае должно выполняться неравенство $AB \geqslant A_1C$, которое равносильно следующим неравенствам:
$$c \geqslant \frac{a}{2\cos\gamma}\;;\;\frac{\sin\gamma}{\sin\alpha}\geqslant\frac{1}{2\cos\gamma};$$
$$\sin2\gamma \geqslant \sin\alpha\;;\;\alpha \leqslant 2\gamma \leqslant \pi-\alpha$$
Учитывая, что $2\gamma \leqslant \beta+\gamma=\pi-\alpha$, имеем: $AB \geqslant A_1C \Leftrightarrow \alpha \leqslant 2\gamma .$

Завершаем доказательство:
$$180^\circ = \alpha+\beta+\gamma \leqslant 2\gamma+2\gamma+\gamma=5\gamma \Rightarrow \gamma \geqslant 36^\circ .$$

А.Эвнин