Несобственный интеграл на неограниченном промежутке

Пусть функция f(x) определена в промежутке [a,+ \infty), т.е. для x \geq a, и интегрируема в любой конечной его части [a,A], так что интеграл \int_{a}^{A}f(x)dx имеет смысл при любых A\geq a.

Предел этого интеграла (конечный или бесконечный) при A \to +\infty называют интегралом функции f(x) от a до +\infty и обозначают символом $$\int\limits_{a}^{\infty}f(x)dx=\lim_{A \to +\infty}\int\limits_{a}^{A}f(x)dx(1)$$

В случае, если этот предел конечен, говорят, что интеграл (1) сходится, а функцию f(x) называют интегрируемой в бесконечном промежутке [a,+ \infty). Если же предел (1) бесконечен или вовсе не существует, то про интеграл говорят, что он расходится. В отличие от собственного интеграла, этот интеграл называются несобственным.

Пример 1 показать

Пример 2 показать

Аналогично интегралу с бесконечным верхним пределом определяется интеграл в пределах от -\infty до $b:$ $$\int\limits_{-\infty}^{b}f(x)dx = \lim_{B \to -\infty}\int\limits_{B}^{b}f(x)dx$$

Пример 3 показать

Несобственный интеграл на неограниченном промежутке

Тест на знание темы «Несобственный интеграл на неограниченном промежутке»

Литература:

Знакопеременные ряды. Теорема Лейбница

Знакопеременным числовым рядом
называется ряд, содержащий как положительные, так и отрицательные члены.
Знакочередующийся ряд
Числовой ряд вида u_{1}-u_2+u_3-u_4+...+(-1)^{n-1}u_n+..., где u_n - это модуль члена ряда, называется знакочередующимся числовым рядом.Знакочередующийся ряд является частным случаем знакопеременного ряда.
Теорема Лейбница(Признак Лейбница)
Если для знакочередующегося числового ряда
u_{1}-u_2+u_3-u_4+...+(-1)^{n-1}u_n+...(*)
Выполняются два условия:

  • Члены ряда монотонно убывают по абсолютной величине u_{1} > u_2 > ...> u_n > ...
  • Члены ряда стремятся к нулю \lim_{n \to \infty} u_n = 0

то ряд (*) сходится, при этом сумма положительна и не превосходит первого члена ряда.

Доказательство:

Частичную сумму чётного порядка можно записать так: S_{2n}=(u_{1}-u_2)+(u_3-u_4)+...+(u_{2n-1}-u_{2n}).

По условию u_{1} > u_2 > ...> u_{2n-1} > u_{2n}, следовательно все разности в скобках положительны, значит, S_{2n} увеличивается с возрастанием n и S_{2n}>0 при любом n.

С другой стороны, если переписать так S_{2n}=u_{1}-[(u_2-u_3)+(u_4-u_5)+...+(u_{2n-2}-u_{2n-1})+u_{2n}]. Выражение в квадратных скобках положительно и  S_{2n}>0, поэтому  S_{2n}<u_1для любого  n. Таким образом, последовательность частичных сумм S_{2n} ограничена и возрастает, следовательно, существует конечный  \lim_{n \to \infty}S_{2n}=S. При этом  0<S_{2n}\leq u_1.

Переходя к частичную сумму нечётного порядка, имеем S_{2n+1}=S_{2n}+u_{2n+1}. Перейдём в последнем равенстве к пределу при n \to \infty:\lim_{n \to \infty}S_{2n+1}=\lim_{n \to \infty}S_{2n}+\lim_{n \to \infty}u_{2n+1}=S+0=S. Таким образом, частичные суммы как чётного, так и нечётного порядка имеют один и тот же предел S, поэтому \lim_{n \to \infty}S_{n}=S, следовательно данный ряд сходится.

Знакопеременные ряды. Признак Лейбница

В данном тесте вы можете проверить, как вы усвоили материал.


Таблица лучших: Знакопеременные ряды. Признак Лейбница

максимум из 9 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Литература:

М1570. Выпуклый многогранник с шестью вершинами

Задачи из журнала «Квант» (1996 год, выпуск 5)

Условие:

Три пары диаметрально противоположных точек сферы — вершины выпуклого многогранника с шестью вершинами. Один из его двугранных углов — прямой. Доказать, что у  него ровно 6 прямых двугранных углов.

Доказательство:

Противоположные грани нашего многогранника симметричны относительно центра сферы О и потому параллельны. Все эти грани — треугольники (поскольку многогранник — выпуклая оболочка трех пар диаметрально противоположных точек сферы). Пусть AB — ребро прямого двугранного угла, образуемого плоскостями граней ABC и ABC'. Эти две плоскости, а также параллельные им плоскости A'B'C' и A'B'C, пересекают сферу по окружностям. Эти четыре окружности пересекаются в восьми точках — вершинах прямоугольного треугольного параллелепипеда(рис. 2). Точки C и C' должны (так же как и A и  A' B и  B') лежать в некоторых двух противоположных вершинах этого параллелепипеда. Соответственно (быть может, поменяв обозначения точек A и B), мы получаем единственный возможный пример — октаэдр ABCA'B'C', вершины которого — это шесть вершин прямоугольного треугольного параллелепипеда ABCDD'C'A'B'(рис. 1). У этого октаэдра, очевидно, ровно шесть прямых двугранных углов — при ребрах AB, BC, CA', A'B', B'C', C'A (и шесть — тупых).

Jaja1

Jaja2