М1574. Задача о связи радиусов описанных окружностей соответствующих треугольников шестиугольника и его полупериметра

Задача из журнала «Квант» (1996 год, 6 выпуск)

Условие

В выпуклом шестиугольнике ABCDEF AB||ED, BC||FE, CD||AF. Пусть R_A, R_C, R_E — радиусы окружностей, описанных около треугольников соответственно, а p — полупериметр шестиугольника. Докажите, что:
$$R_A+R_C+R_E\geq p$$

Иллюстрация к задаче

hexagon

Решение

Первое решение

Пусть длины сторон AB, BC, CD, DE, EF и FA равны a, b, c, d, e и f соответственно. Построим AP\perp BC, AS\perp EF, DQ\perp BC и DR\perp EF. Тогда PQRS — прямоугольник и BF\geq PS=QR. Следовательно, 2BF\geq PS+QR и тогда 2BF\geq (a\sin B+f\sin C)+(c\sin C+d\sin B) (мы воспользовались тем, что \angle A=\angle D, \angle B=\angle E, \angle C=\angle F).

Аналогично,
$$2DB\geq (c\sin A+b\sin B)+(e\sin B+f\sin A),$$
$$2FD\geq (e\sin C+d\sin A)+(a\sin A+b\sin C).$$

Запишем выражение для R_A, R_C, R_E:
$R_A=\frac{BF}{2\sin A}$, $R_C=\frac{DB}{2\sin C}$ и $R_A=\frac{FD}{2\sin B}$.

Таким образом,
$$4(R_A+R_C+R_E)\geq$$ $$\geq a(\frac{\sin B}{\sin A}+\frac{\sin A}{\sin B})+b(\frac{\sin B}{\sin C}+\frac{\sin C}{\sin B})+…\geq$$ $$\geq 2(a+b+…)=4p$$
следовательно, R_A+R_C+R_E\geq p. Равенство достигается тогда и только тогда, когда \angle A=\angle B=\angle C и BF\perp BC, то есть в случае правильного шестиугольника.

Н. Седракян

Второе решение

Рассматриваемый шестиугольник ABCDEF можно получить и некоего треугольника KLM, проведя прямые, параллельные сторонам этого треугольника.

Пусть KL=m, LM=k, MK=l, \angle LKM=\delta, высота к стороне LM равна h, коэффициенты подобия (гомотетин) треугольников KCB, DLE и AFM по отношению к треугольнику KLM равны соответственно x, y, z. Понятно, что
$x+y\leq 1$, $y+z\leq 1$, $x+z\leq 1$ $(*)$
(мы допускаем ниже и случаи равенства). Если R — радиус окружности, описанной около треугольника ABF,
$$R=\frac{BF}{2\sin\delta}\geq\frac{h(1-x)}{2\sin\delta}=\frac{S_KLM(1-x)}{2k\sin\delta}=\frac{lm}{k}(1-x).$$

Оценивая аналогично другие радиусы и выражая стороны шестиугольника через k, l, m, x, y, z, получим, что нам достаточно доказать неравенство
$$\frac{lm}{k}(1-x)+\frac{mk}{l}(1-y)+\frac{kl}{m}(1-z)\geq$$ $$\geq k(1+x-y-z)+l(1+z-x-y)+$$ $$+m(1+y-z-x).$$ $(**)$

Это неравенство линейно относительно . Но переменные неотрицательны и удовлетворяют еще условию $(*)$ (на самом деле они больше нуля и неравенства $(*)$ строгие, но мы несколько расширяем область их изменения). Областью изменения их является многогранник в координатном пространстве (x; y; z) с вершинами (0; 0; 0), (1; 0; 0), (0; 1; 0), (0; 0; 1), (\frac{1}{2}; \frac{1}{2}; \frac{1}{2}). Достаточно проверить, что неравенство $(**)$ выполняется в этих вершинах. Например, при x=y=z=\frac{1}{2} и при x=y=z=0 получаем неравенство
$$\frac{lm}{k}+\frac{mk}{l}+\frac{kl}{m}\geq k+l+m;$$
оно легко доказывается сложением очевидных неравенств
$\frac{kl}{m}+\frac{mk}{l}\geq 2k$, $\frac{kl}{m}+\frac{lm}{k}\geq 2l$, $\frac{lm}{k}+\frac{mk}{l}\geq 2m$.
Для остальных трех вершин неравенство $(**)$ очевидно.

И. Шарыгин

Замечание

Для центрально-симметричных шестиугольников эта задача эквивалентна замечательному неравенству Эрдеша-Морделла: для любой точки M внутри треугольника сумма расстояний от M до вершин по крайней мере вдвое больше суммы расстояний от M до сторон (опустите перпендикуляры MB, MD, MF на стороны и постройте параллелограммы BMFA, DMBC, FMDE; радиусы описанных окружностей треугольников BMF, DMB, FMD равны R_A, R_C, R_E в условии и равны расстояниям от точки M до вершин треугольника).

M706. Задача о равенстве хорд двух окружностей.

Задача из журнала «Квант» (1981 год, выпуск 10)

Условие:

Из центра каждой из двух данных окружностей проведены касательные к другой окружности. Докажите, что хорды, соединяющие точки пересечения касательных с окружностями (на рисунке 1 эти хорды показаны красным цветом), имеют одинаковые длины.

M706 - Рисунок 1

Доказательство:

Из подобия соответствующих треугольников (см. рисунок 2) легко находим,что каждая хорда имеет длину $ \frac{2Rr}{O_{1}O_{2}}$.

m706 Рисунок 2

Источники:

  1. Условие задачи
  2. Решение задачи

Дифференцируемость функции в точке и существование частных производных

Дадим определение дифференцируемости функции в точке.
Определение. Функция $f \left( x \right) = f \left( x_1, \dots, x_n \right)$ называется дифференцируемой в точке $x^0 = \left( x_1^0, \dots, x_n^0 \right)$, если она определена в некоторой окрестности этой точки и существуют такие числа $A_1, \dots, A_n$, что $$f \left( x \right) — f \left( x^0 \right) = \sum\limits_{i = 1}^{n} A_i \left( x_i — x_i^0 \right) + o \left( \rho \left( x, x^0 \right) \right) \qquad (2)$$ при $x \to x^0$.
Теорема 1. Функция $f \left( x \right)$ дифференцируема в точке $x^0$ в том и только том случае, когда в некоторой окрестности точки $x^0$ функция $f \left( x \right)$ может быть представлена в следующем виде: $$f \left( x \right) = f \left( x^0 \right) + \sum\limits_{i = 1}^{n} f_i \left( x \right) \left( x_i — x_i^0 \right), \qquad (2)$$ где функции $f_i \left( x \right)$ непрерывны в точке $x^0$.

Доказательство показать

Упражнение 1. Пусть функции $f \left( x \right)$ и $\varphi \left( x \right)$ определены в окрестности точки $x^0 \in \mathbb{R}^n$, функция $f \left( x \right)$ дифференцируема в точке $x^0$ и $f \left( x^0 \right) = 0$, а функция $\varphi \left( x \right)$ непрерывна в точке $x^0$. Доказать, что функция $f \left( x \right) \varphi \left( x \right)$ дифференцируема в точке $x^0$.
Упражнение 2. Доказать, что функция $$\left( x + y \right) \left( x^3 + y^3 \right) ^{\frac{1}{3}}$$ дифференцируема в точке $\left( 0, 0 \right)$.
Указание. Воспользоваться результатом упр. 1.
Пример 1. Показать, что функция $$f \left( x, y \right) = \sqrt[3]{x^3 + y^4}$$дифференцируема в точке $\left( 0, 0 \right)$.
Решение показать

Пример 2. Показать, что функция $$f \left( x, y \right) = \sqrt[3]{x^3 + y^3}$$недифференцируема в точке $\left( 0, 0 \right)$.
Решение показать

Из теоремы 1 следует, что функция $f \left( x \right)$, дифференцируемая в точке $x^0$, непрерывна в этой точке. Обратное утверждение неверно: функция примера 2 непрерывна, но недифференцируема в точке $\left( 0, 0 \right)$.

Необходимое условие дифференцируемости функции в точке.

Теорема 2. Если функция $f \left( x \right)$ дифференцируема в точке $x^0 \in \mathbb{R}^n$, то она имеет в точке $x^0$ все частные производные $\frac{ \partial f }{ \partial x_i } \left( x^0 \right)$, $i = \overline{1, n}$, и $$f \left( x \right) — f \left( x^0 \right) = \\ = \sum\limits_{i = 1}^{n} \frac{ \partial f }{ \partial x_i } \left( x^0 \right) \left( x_i — x_i^0 \right) + o \left( \rho \left( x, x^0 \right) \right), x \to x^0. \qquad (6)$$

Доказательство показать

Функция примера 2 имеет в точке $\left( 0, 0 \right)$ обе частные производные первого порядка: $$\frac{ \partial f }{ \partial x } \left( 0, 0 \right) = \lim\limits_{x \to 0} \frac{ f \left( x, 0 \right) — f \left( 0, 0 \right) }{ x } = \\ = \lim\limits_{x \to 0} \frac{ \sqrt[3]{x^3} }{ x } = 1, \frac{ \partial f }{ \partial y } \left( 0, 0 \right) = 1.$$ Так как функция $f \left( x, y \right) = sqrt[3]{x^3 + y^3}$ примера 2 недиффиринцируема в точке $\left( 0, 0 \right)$, то этот пример показывает, что из существования частных производных в точке не следует дифференцируемость функции в этой точке. Существование частных производных функции в точке не гарантирует даже непрерывности функции в этой точке.
Так, функция $$f \left( x \right) = \begin{cases} \frac{2xy}{x^2+y^2}, & x^2 + y^2 > 0, \\ 0, & x = y = 0 \end{cases}$$ не имеет предела при $\left( x, y \right) \to \left( 0, 0 \right)$, а поэтому и не является непрерывной в точке $\left( 0, 0 \right)$. Тем не менее у этой функции в точке $\left( 0, 0 \right)$ существуют обе частные производные: $$\frac{ \partial f }{ \partial x } \left( 0, 0 \right) = \lim\limits_{x \to 0} \frac{ f \left( x, 0 \right) — f \left( 0, 0 \right) }{ x } = 0, \frac{ \partial f }{ \partial y } \left( 0, 0 \right) = 0.$$

Достаточные условия дифференцируемости функции в точке.

Теорема 3. Если все частные производные $\frac{ \partial f }{ \partial x_i }$, $i = \overline{1, n}$ определены в окрестности точки $x^0 \in \mathbb{R}^n$ и непрерывны в точке $x^0$, то функция $f \left( x \right)$ дифференцируема в точке $x^0$.

Доказательство показать

Непрерывность частных производных в точке не является необходимым условием дифференцируемости функции в этой точке.
Функция $$f \left( x, y \right) = \begin{cases} \left( x^2 + y^2 \right) \sin \frac{ 1 }{ \sqrt{ x^2 + y^2 } }, & x^2 + y^2 > 0, \\ 0, & x = y = 0, \end{cases}$$ дифференцируема в точке $\left( 0, 0 \right)$, так как $$f \left( x, y \right) = 0 \cdot x + 0 \cdot y + o \left( \sqrt{ x^2 + y^2 } \right), \left( x, y \right) \to \left( 0, 0 \right).$$ Но при $x^2 + y^2 > 0$ частная производная$$\frac{ \partial f }{ \partial x } \left( x, y \right) = 2x \sin \frac{ 1 }{ \sqrt{ x^2 + y^2 } } — \frac{ x }{ \sqrt{ x^2 + y^2 } } \cos \frac{ 1 }{ x^2 + y^2 }$$ не имеет предела при $\left( x, y \right) \to \left( 0, 0 \right)$ и, следовательно, не является непрерывной функцией в точке $\left( 0, 0 \right)$. Чтобы в этом убедиться, достаточно показать, что $\frac{ \partial f \left( x, 0 \right) }{ \partial x }$ не имеет предела при $x \to 0$.

Список литературы

Тест

Тест для проверки усвоения материала

Разложение в ряд Тейлора основных элементарных функций

Перед тем прочтением данной статьи следует просмотреть следующий материал определение многочлена Тейлора, Остатки формулы Тейлора

,Коэффициенты Тейлора, ряд Тейлора

Разложение основных элементарных функций в ряд Тейлора

Запишем разложения основных элементарных функций в ряд Тейлора в окрестности точки $x_{0}=0$, т.е. в ряд вида $f(x)=$$\sum\limits _{ n=0 }^{ \infty }{ \frac { { f }^{ (n) }(0) }{ n! } } { x }^{ n }$ (1), который называется рядом Маклорена.

Показательная и гиперболические функции

Пусть $f(x)=e^{x}$. Найдем производные функции: ${f}'(x)= e^{x}$, $f^{\prime\prime}( x )=e^{x}$,$\ldots$,$f^{(n)}(x)=e^{x}$. Тогда $0 < f(x) < e^{\rho }$, $0 < f^{(n)}(x) < e^{\rho }$ для любого $x\in(-\rho ,\rho )$, где $\rho > 0$ и для любого $n\in \mathbb{N}$.

Из теоремы о представлении функции в виде ее ряда Тейлора (Курс математического анализа, ст.437) следует, что ряд (1) для $f(x)=e^{x}$ сходится к этой функции на интервале $(-\rho ,\rho )$ при любом $\rho > 0$. Так как для функции $f(x)=e^{x}$ выполняются $f(0)=1$, $f^{(n)}(0)=1$ для всех $n\in \mathbb{N}$, то, по формуле (1), получаем разложение в ряд Маклорена показательной функции:
$$e^{x}=1+x+\frac{x^{2}}{2!}+ \ldots +\frac{x^{n}}{n!}+ \ldots = \sum_{n=0}^{\infty }\frac{x^{n}}{n!}, x\in \mathbb{R} (2)$$

Используя разложение (2), синус и косинус $\text{sh} \, x=\frac{e ^{x}-e ^{-x}}{2}$, $\text{ch} \, x=\frac{e ^{x}+e ^{-x}}{2}$, находим:
$$\text{sh} \, x=x+\frac{x^{3}}{3!}+ \ldots +\frac{x^{2n+1}}{(2n+1)!}+ \ldots =$$ $$=\sum_{n=0}^{\infty }\frac{x^{2n+1}}{(2n+1)!}, x\in \mathbb{R} (3)$$
$$\text{ch} \, x=1+\frac{x^{2}}{2!}+ \ldots +\frac{x^{2n}}{(2n)!}+ \ldots =$$ $$=\sum_{n=0}^{\infty }\frac{x^{2n}}{(2n)!}, x\in \mathbb{R} (4)$$
Радиус сходимости $R=+\infty $.

Тригонометрические функции

Пусть $f(x)=\sin x$. Найдем производные функции: ${f}'(x)= \cos x$, $f^{\prime\prime}(x)= -\sin x$,$\ldots$,$f^{(n)}(x)=\sin x$ при $n$ — четное. Тогда $\left | f^{(n)}(x) \right | \leq 1$, для любого $n\in \mathbb{N}$ и для любого $x\in \mathbb{R}$.

Из теоремы о представлении функции в виде ее ряда Тейлора (Курс математического анализа, ст.437) ряд (1) для $f(x)=\sin x$ сходится для любого $x\in (-\infty , \infty )$. Радиус сходимости $R=+\infty$.

Если $f(x)=\sin x$, то $f(0)=0$, $f^{(2n)}(0)=0$, ${f}'(0)=1$, $f^{(2n+1)}(0)=(-1)^{n}$ для любого $n\in \mathbb{N}$, и, по формуле (1), получаем разложение в ряд Маклорена:
$$\sin x =x-\frac{x^{3}}{3!}+ \ldots +(-1)^{n}\frac{x^{2n+1}}{(2n+1)!}+ \ldots =$$ $$=\sum_{n=0}^{\infty }(-1)^{n}\frac{x^{2n+1}}{(2n+1)!}, x\in \mathbb{R} (5)$$

Пусть $f(x)=\cos x$. Найдем производные функции: ${f}'(x)= -\sin x$, $f^{\prime\prime}(x)= -\cos x$,$\ldots$,$f^{(n)}(x)=\cos x$ при $n$ — четное. Тогда $\left | f^{(n)}(x) \right | \leq 1$, для всех $x\in \mathbb{R}$, $n\in \mathbb{N}$, $f(0)=1$, ${f}'(0)=0$, $f^{(2n)}(0)=(-1)$, $f^{(2n+1)}(0)=0$ для всех $n\in \mathbb{N}$. По формуле (1):
$$\cos x =1-\frac{x^{2}}{2!}+ \ldots +(-1)^{n}\frac{x^{2n}}{(2n)!}+ \ldots =$$ $$=\sum_{n=0}^{\infty }(-1)^{n}\frac{x^{2n}}{(2n)!}, x\in \mathbb{R} (6)$$

Радиус сходимости $R=+\infty$.

Логарифмическая функция

Пусть $f(x)=\ln(1+x)$. Тогда $$f^{(n)}(x)=\frac{(-1)^{(n-1)}(n-1)!}{(1+x)^{n}} (7),$$ откуда находим $$\frac{f^{(n)}(0)}{n!}=\frac{(-1)^{(n-1)}}{n}.$$

Оценим остаток по формуле остаточного члена в интегральной форме: $$r_{n}=\frac{1}{n!}\int\limits_{0}^{x}(x-t)^{n}f^{(n+1)}(t)dt=\frac{x^{(n+1)}}{n!}\int\limits_{0}^{1}(1-\tau )^{n}f^{(n+1)}(\tau x)d\tau.$$ Используя равенство (7), получаем $$r_{n}=(-1)^{n}x^{n+1}\int\limits_{0}^{1}\frac{(1-\tau )^{n}}{(1+\tau x)^{n+1}}d\tau.$$ Пусть $\left | x \right | < 1$. Тогда для $0\leq \tau \leq 1$ справедливы неравенства $\left | 1+\tau x \right |\geq 1-\tau \left | x \right |\geq 1-\tau$, $\left | 1+\tau x \right |\geq 1-\left | x \right |$. Отсюда следует, что при любом $n\in \mathbb{N}$ выполняется неравенство $\left | 1+\tau x \right |^{n+1}\geq (1-\tau )^{n}(1-\left | x \right |)$. Используя предыдущее неравенство, получаем оценку остаточного члена: $$\left | r_{n}(x) \right |\leq \left | x \right |^{n+1}\int\limits_{0}^{1}\frac{d\tau }{1-\left | x \right |}=\frac{\left | x \right |^{n+1}}{1-\left | x \right |}\Rightarrow r_{n}(x)\rightarrow 0$$ при $n\rightarrow \infty$, если $\left | x \right |< 1.$

Пусть $x=1$. Тогда $\left | r_{n}(1) \right |=$$\int\limits_{0}^{1}\frac{(1-\tau )^{n}}{(1+\tau )^{n+1}}d\tau$$ \leq \int\limits_{0}^{1}(1-\tau )^{n}d\tau$$ =\frac{1}{n+1}$ $\rightarrow 0.$

Если $x\in (-1,1]$, то остаточный член $r_{n}(x)$ для функции $f(x)=\ln(1+x)$ стремится к нулю при $n\rightarrow \infty.$

В итоге получаем разложение в ряд Маклорена

$$\ln(1+x)=x-\frac{x^{2}}{2}+ \ldots +(-1)^{n+1}\frac{x^{n}}{n}+ \ldots =$$ $$=\sum_{n=1}^{\infty }(-1)^{n+1}\frac{x^{n}}{n}, x\in \mathbb{R} (8)$$
Радиус сходимости $R=1.$

Степенная функция

Пусть $f(x)=(1+x)^{\alpha }$. Если $\alpha =0$, то $f(x)=1$, а если $\alpha =n$, где $n\in \mathbb{N}$, то $f(x)$-многочлен степени $n$, который можно представить в форме бинома Ньютона в форме конечной суммы:
$$f(x)=\sum\limits_{k=0}^{n}C_{n}^{k}x^{k}.$$ Покажем, что если $\alpha \neq 0$ и $\alpha \notin \mathbb{N}$, то функция $f(x)=(1+x)^{\alpha }$ представляется при каждом $x\in (-1,1)$ сходящимся к ней рядом Маклорена $$(1+x)^{\alpha }=\sum\limits_{n=0}^{\infty }C_{\alpha }^{n}x^{n} (9),$$ где $C_{\alpha }^{0}=1$, $C_{\alpha }^{n}=\frac{\alpha (\alpha -1) \ldots (\alpha -n+1))}{n!}$.

Так как $f^{(n+1)}(x)=\alpha (\alpha -1) \ldots (\alpha -n)(1+x)^{\alpha -n-1}$, то по формуле $r_{n}(x)=\frac{x^{(n+1)}}{n!}\int\limits_{0}^{1}(1-\tau )f^{(n+1)}(\tau x)d\tau$ получаем $$r_{n}(x)=A_{n}x^{n+1}\int\limits_{0}^{1}\left ( \frac{1-\tau}{1+\tau x} \right )^{n}(1+\tau x)^{\alpha -1}d\tau,$$ где $C_{n }=\frac{\alpha (\alpha -1) \ldots (\alpha -n)}{n!}.$

Выберем $m\in \mathbb{N}$ такое, чтобы выполнялось условие $\left | \alpha \right |\leq m$. Тогда для всех $n\geq m$ справедливо $\left | A_{n} \right |$$\leq \frac{m(m+1) \ldots (m+n)}{n!}$$\leq \frac{(m+n)!}{n!}=(n+1) \ldots (n+m)\leq (2n)^{m}$. Используя неравенства $\left | 1+\tau x \right |\geq 1-\tau \left | x \right |\geq 1-\tau$, $\left | 1+\tau x \right |\geq 1-\left | x \right |$, а также неравенство $\left | 1+\tau x \right |\leq 1+\left | x \right |$, получаем $0\leq \frac{1-\tau }{1+\tau x}\leq 1$.

Так как $\lim\limits_{t\rightarrow \infty }\frac{t^{m}}{a^{t}}=0$ при $\alpha > 1$, то $\lim\limits_{n\rightarrow \infty }\frac{n^{m}}{\left ( \frac{1}{\left | x \right |} \right )^{n+1}}=0$. Поэтому справедливо равенство $(1+x)^{\alpha }=\sum\limits_{n=0}^{\infty }C_{\alpha }^{n}x^{n}$. Радиус сходимости этого ряда $R=1$ при $\alpha \neq 0$ и $\alpha \notin \mathbb{N}.$

$$(1+x)^{\alpha }=$$ $$1+\alpha x+\frac{\alpha (\alpha -1)}{2!}x^{2}+ \ldots +\frac{\alpha (\alpha -1) \ldots (\alpha -n+1)}{n!}x^{n}+\ldots=$$$$1+\sum_{n=1}^{\infty }\frac{\alpha (\alpha -1) \ldots (\alpha -n+1)}{n!}x^{n}+\ldots, x\in \mathbb{R} (10)$$

    Частные случаи формулы (9):

  • $\frac{1}{1+x}=1-x+x^{2}-\ldots=\sum\limits_{n=0}^{\infty }(-1)^{n}x^{n}, x\in \mathbb{R}$
  • $\frac{1}{1-x}=\sum\limits_{n=0}^{\infty }x^{n}, x\in \mathbb{R}$
Пример показать

Литература

  • Конспект З.М.Лысенко по математическому анализу
  • А.М.Тер-Крикоров, М.И.Шабунин «Курс математического анализа«, ст. 435-441, 158-165
  • Разложение в ряд Тейлора основных элементарных функций

    Для закрепления материала рекомендуется пройти этот тест

    Определение частной производной и её геометрический смысл

    Определение. Пусть функция $$ f \left( x \right) = f \left( x_1, \dots, x_n \right) $$ определена в окрестности точки $ x^0 = \left( x_2^0, \dots, x_n^0 \right) $. Рассмотрим функцию одной переменной $$ \varphi \left( x_1 \right) = f \left( x_1, x_2^0, \dots, x_n^0 \right). $$ Функция $ \varphi \left( x_1 \right) $ может иметь производную в точке $ x_1^0 $. По определению такая производная называется частной производной $ \frac{ \partial f }{ \partial x_1 } \left( x^0 \right) $. Таким образом, $$ \frac{ \partial f }{ \partial x_1 } \left( x^0 \right) = \frac{ \partial f }{ \partial x_1 } \left( x_1^0, \dots, x_n^0 \right) = \\ = \lim\limits_{\Delta x_1 \to 0 } \frac{ f \left( x_1, x_2^0, \dots, x_n^0 \right) — f \left( x_1^0, \dots, x_n^0 \right) }{ \Delta x_1 }, $$ где $ \Delta x_1 = x_1 — x_1^0 $.
    Аналогично определяются частные производные (первого порядка) $$ \frac{ \partial f }{ \partial x_i } \left( x_1^0, \dots, x_n^0 \right) , i = \overline{2, n}. $$ Употребляются и другие обозначения для частных производных первого порядка: $$ \frac{ \partial f }{ \partial x_i } \left( x^0 \right) = f_{x_i} \left( x^0 \right) = D_i f \left( x^0 \right) = \\ = {f’}_{x_i} \left( x^0 \right) = \frac{ \partial }{ \partial x_i } f \left( x^0 \right) = \frac{ \partial f \left( x^0 \right) }{ \partial x_i }. $$ Функция двух переменных может иметь в точке $ \left( x^0, y^0 \right) $ две частные производные первого порядка $$ \frac{ \partial f }{ \partial x } \left( x^0, y^0 \right), \frac{ \partial f }{ \partial y } \left( x^0, y^0 \right). $$ Для функции трех переменных — три частные производные первого порядка $$ \frac{ \partial f }{ \partial x } \left( x^0, y^0, z^0 \right), \frac{ \partial f }{ \partial y } \left( x^0, y^0, z^0 \right), \frac{ \partial f }{ \partial z } \left( x^0, y^0, z^0 \right). $$ Поскольку при вычслении частных производных все переменные, кроме одной, фиксируются, то техника вычисления частных производных такая же, как техника вычисления производных функции одной переменной.
    Например, $$ \frac{ \partial }{ \partial x } \sqrt{x^2 + y^2} = \frac{ 1 }{ 2 \sqrt{x^2 + y^2} } \frac{ \partial }{ \partial x } \left( x^2 + y^2 \right) = \frac{ x }{ \sqrt{x^2 + y^2} }. $$

    Геометрический смысл

    kolomeiets20160630Рассмотрим функцию двух переменных $ z = f \left( x, y \right) $, определенную на множестве $ D \subset \mathbb{R}^2 $ и имеющую конечные частные производные $ \frac{ \partial z }{ \partial x } $ и $ \frac{ \partial z }{ \partial y } $ в точке $ M_0 \left( x_0, y_0 \right) $. Чтобы выяснить геометрический смысл частных производных, выполним следующие построения. В плоскости $ Oxy $ отметим точку $ M_0 $.
    Затем нарисуем поверхность $ S $, являющуюся графиком функции $ z = f \left( x, y \right) $. Без ограничения общности будем полагать, что поверхность расположена над плоскостью $ Oxy $. Через точку $ M_0 $ проведем плоскость $ y = y_0 $ параллельную коорднатной плоскости $ Oxy $. В сечении поверхности $ S $ этой плоскостью получаем кривую $ \Gamma $. Уравнение этой кривой описывается функцией одной переменной $ z = f \left( x, y_0 \right) $. Так как в точке $ M_0 $ существует частная производная $ {f’}_x \left( x_0, y_0 \right) $, то она согласно геометрическому смыслу обычной производной функции одной переменной равна угловому коэффициенту касательной, проведенной в точке $ N \left( x_0, y_0, f \left( x_0, y_0 \right) \right) $ к кривой $ \Gamma $: $$ {f’}_x \left( x_0, y_0 \right) = \tan \alpha, $$ где $ \alpha $ — угол между касательной и положительным направлением оси $ Ox $. В этом состоит геометрический смысл частной производной $ {f’}_x \left( x_0, y_0 \right) $.

    Список литературы

    Тест

    Тест для проверки усвоения материала