Задача из журнала «Квант» (2001 год, 5 выпуск) M1788

Условие


В треугольнике $ABC$ точка $I$ — центр вписанной окружности $A1$,$B1$,$C1$ — точки ее касания со сторонами $BC$,$CA$,$AB$ (рис.1). Прямые $AB1$ и $BB1$ пересекаются в точке $P$, $AC$ и $A1C1$ — в точке $M$, $BC$ и $B1C1$ — в точке $N$. Докажите, что прямые $IP$ и $MN$ перпендикулярны.

Решение


Построим на отрезках $IA$ и $IA1$ как на диаметрах окружности. Отличная от $I$ точка $N1$ их пересечения будет основанием перпендикуляра, опущенного из $I$ на $AA1$, а прямая $IN1$ проходит через $N$, так как $IN1$ — общая хорда этих двух окружностей, $BC$ — общая касательная первой из них и вписанной окружности треугольника, $B1C1$ — общая хорда второй и вписанной окружностей. Из подобия прямоугольных треугольников $INA1$ и $IA1N1$ получаем $IN*IN1 = r^2$, где $r$ — радиус вписанной окружности. Аналогично получаем, что прямая $IM$ перпендикулярная $BB1$, и для точки пересечения $M1$: $IM*IM1 = r^2$. Следовательно, треугольник $IM1N1$ подобен треугольнику $INM$ и вписан в окружность с диаметром $IP$. Поэтому $\angle M1IP + \angle INM = \angle M1N1P + \angle IN1M1 = 90^{\circ}.$
Что и хотели доказать.

А. Заславский

Задачa из журнала «Квант» № M 1677.

Задача из журнала «Квант» (выпуск №5, 1999).

Условие

Диагонали параллелограмма $ABCD$ пересекаются в точке $O$. Окружность, проходящая через точки $A$, $O$ и $B$, касается прямой $BC$. Докажите, что окружность, проходящая через точки $B$, $O$ и $C$, касается прямой $CD$.

Решение

Углы $OAB$ и $OBC$ равны, так как первый вписан в окружность $AOB$, а второй образован касательной $BC$ и хордой $BO$этой окружности (см. рисунок). Следовательно, углы $OBC$ и $OCD$ также равны, что эквивалентно утверждению задачи. Отметим, что параллелограмм, вершинами которого являются середины сторон данного, подобен исходному, поэтому задача допускает другую формулировку: в параллелограмме $ABCD$ углы $CAB$ и $DBC$ равны, $AD=1$, найти $AC$.

А.Заславский

Задача из журнала «Квант» (2001 год, 4 выпуск) М1759

Условие

Имеется остроугольный треугольник с меньшей стороной $c$ и противолежащим ей углом $\gamma$ . Известно, что треугольник можно раскрасить в два цвета так, что расстояние между любыми двумя точками одного цвета будет не больше $с$. Докажите, что $\gamma \geqslant 36^\circ$.

Решение

Рисунок к задачеРассмотрим треугольник $ABC$ с длинами сторон $AB=c$, $BC=a$, $CA=b$, причём $a \geqslant b \geqslant c$; углы при вершинах $A$, $B$ и $C$ обозначим соответственно через $\alpha$, $\beta$ и $\gamma$.

Пусть точка $K$ — середина стороны $BC$, точка $A_1$ — пересечение серединного перпендикуляра к $BC$ и стороны $AC$ (см. рисунок).

Из условия задачи следует, что в указанной раскраске вершины $B$ и $C$ должны быть разного цвета, поскольку расстояние между ними больше $c$ (если оно равно $c$, то треугольник равносторонний, и для него утверждение задачи выполняется). Значит, точка $A_1$ должна иметь одинаковый цвет с одной из точек $B$ или $C$.

В любом случае должно выполняться неравенство $AB \geqslant A_1C$, которое равносильно следующим неравенствам:
$$c \geqslant \frac{a}{2\cos\gamma}\;;\;\frac{\sin\gamma}{\sin\alpha}\geqslant\frac{1}{2\cos\gamma};$$
$$\sin2\gamma \geqslant \sin\alpha\;;\;\alpha \leqslant 2\gamma \leqslant \pi-\alpha$$
Учитывая, что $2\gamma \leqslant \beta+\gamma=\pi-\alpha$, имеем: $AB \geqslant A_1C \Leftrightarrow \alpha \leqslant 2\gamma .$

Завершаем доказательство:
$$180^\circ = \alpha+\beta+\gamma \leqslant 2\gamma+2\gamma+\gamma=5\gamma \Rightarrow \gamma \geqslant 36^\circ .$$

А.Эвнин

М416. О максимальном количестве ребер в таком графе, что никакие три ребра не создают треугольник

Задача из журнала «Квант»(1977 №8)

Условие

На плоскости даны $n$ точек $A_{1},\ldots,A_{n}$, никакие три из которых не лежат на одной прямой. Какое наибольшее число отрезков с концами в этих точках можно провести так, чтобы не получилось ни одного треугольника с вершинами в этих точках?

Решение

Проведем максимальное число отрезков с концами в точках $A_{1},\ldots,A_{n}$. Получим некоторый граф с вершинами в этих точках. Отрезки с концами в вершинах графа будем называть ребрами графа. Оценим число ребер в нашем графе.

Назовем степенью вершины в графе число выходящих из неё ребер. Пусть $k$ — максимальная степень вершины в графе, и пусть некоторая вершина $A_{i}$ соединена с $k$ вершинами $A_{j_{1}},\ldots,A_{j_{k}}$ графа (рисунок 1).

kvant1

Тогда степень любой вершины из множества $\left \{ A_{j_{1}},\ldots,A_{j_{k}} \right \}$ не превосходит $n-k$ ($n$ — число вершин графа), поскольку любые вершины из этого множества уже не могут быть соединены ребром (в нашем графе никакие три ребра не образуют треугольника — с вершинами в вершинах графа). Так как $k$ — максимальная степень вершины в графе, степень каждой из оставшихся $n-k$ вершин не превосходит $k$. Поэтому сумма степеней всех вершин графа не превосходит $$k \left(n-k \right )+ \left (n-k \right) k=2k \left (n-k\right).$$ Но легко видеть, что сумма степеней всех вершин графа равна удвоенному количеству его ребер. Следовательно, количеств ребер графа не больше $$k\left(n-k\right)\leqslant\left(\frac{k+(n-k)}{2}\right)^{2}=\frac{n^{2}}{4}.$$ Чтобы получить данное соотношение, мы воспользовались теоремами о среднем арифметическом и среднем геометрическом. Учитывая, что количество ребер графа — число целое, мы получаем, что ребер в нашем графе не больше чем $\left [ \frac{n^{2}}{4}\right]$ (здесь $\left [ x \right]$ означает целую часть числа $x$ — наибольшее целое число, не превосходящее $x$).

Укажем теперь способ построения графа без треугольников с $n$ вершинами, число ребер которого в точности равно $\left [ \frac{n^{2}}{4}\right]$.

Разобьем множество точек $A_{1},\ldots,A_{n}$ на два: $\left [ \frac{n}{2} \right ]$ точек в одном множестве и $n — \left [ \frac{n}{2} \right ]$ — в другом. Соединив все точки точки первого множества с точками второго (как на рисунке 2, где $n=5$), мы получим граф, у которого не будет ни одного треугольника с вершинами в точках $A_{1},\ldots,A_{n}$.

kvant2

Число ребер в этом графе, очевидно, равно $\left [ \frac{n}{2} \right ]\left(n-\left [ \frac{n}{2} \right ]\right)$. Если $n$ — четное, то $$\left [ \frac{n}{2} \right ]\left (n-\left [ \frac{n}{2} \right ]\right)=\frac{n^{2}}{4}=\left [ \frac{n^{2}}{4} \right ].$$Если $n$ — нечетное, то $\left [ \frac{n}{2} \right ]\left(n-\left [ \frac{n}{2} \right ]\right)=$ $\frac{n-1}{2}\left(n-\frac{n-1}{2}\right)=$ $\frac{n^{2}-1}{4}=$ $\left [ \frac{n^{2}}{4}\right].$ Что и требовалось доказать.

Итак, ответ в задаче: максимальное число отрезков равно $\left [ \frac{n^{2}}{4}\right]$(этот результат в теории графов называют теоремой Турана).

M447. Задача об остроугольном треугольнике

Задача из журнала «Квант»(1977, №6)

Условие

В остроугольном треугольнике $ABC$ отрезки $BO$ и $CO$ (где $O$ — центр описанной окружности) продолжены до пересечения в точках $D$ и $E$ со сторонами $AC$ и $BC$ треугольника. Оказалось, что $\widehat{BDE}=50^{\circ}$, а $\widehat{CED}=30^{\circ}$. Найдите величины углов треугольника $ABC$ и докажите равенства $\left | AE \right |=\left | ED \right |$, $\left | CE \right |=\left | CB \right |$, $\left | CD \right |=\left | CO \right |$.

Решение

Величина угла $A$ находится легко (см. рис. 1): поскольку $\widehat{BOC}=\widehat{EOD}=180^{\circ}-30^{\circ}-50^{\circ}=100^{\circ}$, величина вписанного угла $A=50^{\circ}$. Заметим также, что $\widehat{OBC}=\widehat{OCB}=40^{\circ}$ (поскольку $\left | BO \right |=\left | CO \right |$).

Рис. 1

Рис. 1

Найти величины других углов треугольника $ABC$ можно с помощью теоремы синусов. Положим $\widehat{EBD}=\varphi $. Тогда $\widehat{OEB}=100^{\circ}-\varphi $, $\widehat{ABC}=\varphi +40^{\circ}$, $\widehat{ACB}=90^{\circ}-\varphi $, $\widehat{OCD}=50^{\circ}-\varphi $, $\widehat{ODC}=\varphi +50^{\circ}$; таким образом, $0^{\circ}< \varphi < 50^{\circ}$. Из треугольников $ODE, OBE$ и $OCD$ находим: $$\frac{\sin 50^{\circ}}{\sin 30^{\circ}}=\frac{\left | OE \right |}{\left | OD \right |}=\frac{\left | OE \right |}{\left | OB \right |}\cdot \frac{\left | OE \right |}{\left | OD \right |}=$$ $$=\frac{\sin \widehat{OBE}}{\sin \widehat{OEB}}\cdot \frac{\sin \widehat{ODC}}{\sin \widehat{OCD}}=\frac{\sin \varphi \sin \left ( \varphi +50^{\circ} \right )}{\sin \left ( 100^{\circ} -\varphi \right )\sin \left ( 50^{\circ}-\varphi \right )} .$$ Уравнение, из которого мы должны найти $\varphi \left ( 0^{\circ} < \varphi < 50^{\circ}\right )$: $$\frac{\sin \varphi \sin \left ( \varphi +50^{\circ} \right )}{\sin \left ( 100^{\circ} -\varphi \right )\sin \left ( 50^{\circ}-\varphi \right )} = 2\sin 50^{\circ},$$ эквивалентно следующим: $$2\sin 50^{\circ}\left ( \cos 50^{\circ} -\cos \left ( 150^{\circ} -2\varphi \right ) \right ) =\cos 50^{\circ}-\cos \left ( 50^{\circ}+2\varphi \right ),$$ $$\sin 20^{\circ}-\sin\left ( 2\varphi -40^{\circ} \right )+2\sin 50^{\circ}\cos \left ( 2\varphi +30^{\circ} \right )=0,$$ $$\cos \left ( \varphi -10^{\circ} \right )\sin \left ( 30^{\circ}-\varphi \right )+\sin 50^{\circ}\sin \left ( 60^{\circ}-2\varphi \right )=0,$$ $$\sin\left ( 30^{\circ} -\varphi \right )\left ( \cos \left ( \varphi -10^{\circ} \right )+2\sin 50^{\circ}\cos \left ( 30^{\circ}-\varphi \right ) \right )=0.$$ Поскольку $\cos \left ( \varphi -10^{\circ} \right )$ и $\cos \left ( \varphi -30^{\circ} \right )$ положительны при $0^{\circ}< \varphi < 50^{\circ}$, последнее уравнение имеет единственный корень $\varphi =30^{\circ}$.

Отсюда $\widehat{ABC}=70^{\circ}$, $\widehat{ACB}=60^{\circ}$/

Далее, $\widehat{BEC}=70^{\circ}\Rightarrow \left | CE \right |=\left | CB \right |;$ $$\widehat{ODC}=80^{\circ}\Rightarrow \left | CD \right |=\left | CO \right |;~\widehat{ADE}=50^{\circ}\Rightarrow \left | EA \right |=\left | ED \right |.$$

Равенства длин, которые требуется установить в задаче, подсказывают, какие углы должен иметь треугольник $ABC$. Но даже зная ответ, придумать данное выше тригонометрическое решение трудно. Вместо этого можно рассуждать иначе.

Рис. 2

Рис. 2

Заметим прежде всего, что условия $\widehat{OED}=30^{\circ}, \widehat{ODE}=50^{\circ}$ определяют ответ однозначно. Действительно (рис. 2), если на окружности с центром $O$ закрепить точки $B$ и $C$ так, что $\widehat{BOC}=100^{\circ}$, и перемещать точку $A$ по дуге ${B}'{C}’$ (симметричной дуге $BC$) от точки ${B}’$ к точке ${C}’$, то точка $D\in \left [ {B}’O \right ]$ будет приближаться к $O$, а $E\in \left [ O{C}’\right ]$ — удаляться от $O$; при этом величина угла $\widehat{ODE}$ будет возрастать, а угла $\widehat{OED}$ — убывать; значит, только при одном положении $A$ эти величины могут принять нужные значения ($50^{\circ}$ и $30^{\circ}$).

Рис. 3

Рис. 3

Теперь нужно лишь доказать, что треугольник с углами $\widehat{A}=50^{\circ}$, $\widehat{B}=70^{\circ}$, $\widehat{C}=60^{\circ}$ удовлетворяют условию, то есть что все углы — такие, как указано на рисунке 3:

  1. Достаточно проверить, что $DE$ — биссектриса угла $ADB$: $$\frac{\left | AE \right |}{\left | EB \right |}=\frac{\left | AE \right |}{\left | EC \right |}=\frac{\left | EC \right |}{\left | EB \right |}=\frac{\sin 20^{\circ}\sin 70^{\circ}}{\sin 50^{\circ}\sin 40^{\circ}}=$$ $$\frac{2\sin 20^{\circ}\cos 20^{\circ}}{2\sin 50^{\circ}\sin 40^{\circ}}=\frac{\sin 30^{\circ}}{\sin 50^{\circ}}=\frac{\left | AD \right |}{\left | DB \right |}.$$
    Здесь мы снова используем теорему синусов. А вот чисто геометрическое доказательство.
  2. Рис. 4

    Рис. 4

  3. Треугольник $ECB$ имеет ось симметрии, поскольку $\widehat{CEB}=\widehat{CBE}$. Пусть $K$ — точка, симметричная точке $O$ относительно этой оси (рис. 4). Тогда треугольник $KCD$ равносторонний ($\left | KC \right |=\left | OC \right |=\left | DC \right |=a,~\widehat{KCD}=60^{\circ}$), и потому $\left | KD \right |=a,~\widehat{DKC}=\widehat{KDC}=60^{\circ}$, а $\bigtriangleup KBE\cong \bigtriangleup OEB$, и потому $
    \widehat{BEK}=30^{\circ},~\widehat{EKB}=80^{\circ},~\left | EK \right |=\left | OB \right |=a$. Итак, треугольник $EKD$ равнобедренный, $\widehat{EKD}=40^{\circ}$, поэтому $\widehat{KED}=\widehat{KDE}=70^{\circ},$ $\widehat{ODE}=70^{\circ}- \widehat{ODK}=70^{\circ}-\left ( 80^{\circ} -60^{\circ}\right )=50^{\circ},$ $\widehat{OED}=70^{\circ}-40^{\circ}=30^{\circ}.$

Н. Васильев,
Я. Суконник