М1827. Доказать, что прямая проходит через центр окружности

Задача из журнала «Квант» (2002 год, 4 выпуск)

Условие

Пусть $Q$ — произвольная точка окружности с диаметром $AB, QH$ — перпендикуляр, опущенный на $AB.$ Точки $C$ и $М$ — это точки пересечения окружности с центром $Q$ и радиусом $QH$ с первой окружностью.

Докажите, что прямая $CM$ делит радиус $QH$ пополам (рис.1).

рис. 1

Проведем прямые $CH$ и $MH$ до пересечения с окружностью в точках $F$ и $R$ соответственно (рис.2). Тогда $\angle MCF = \frac{1}{2} \cup MF = \angle MRF$ и $\angle MCF = \angle MHA,$ так как $AH$ — касательная; значит, $\angle RHB = \angle HRF, $ или $AB \| FR.$ В $\Delta HRW$ угол $\angle HWR = \frac{1}{2} \cup QR = \angle QMH,$ но $\angle QMH = \angle QHM (MQ = QH),$ т.е. $\Delta HRW$ — равнобедренный и $RI$ — высота в $\Delta HRW (I = HW\cap RF).$ Получим, что $HI = IW, QH = HW.$ Пользуясь результатом задачи «Проблема бабочки», видим, что $IH = HL = IW = LQ,$ что и требовалось доказать. (О «бабочках» см., например, книгу: Г.С.Коксетер, С.Л.Грейтцер «Новые встречи с геометрией» (стр. 59-60)).

рис. 2

В.Дубов

М1319. Задача об углах в треугольнике

Задача из журнала «Квант» (1991 год, 12 выпуск)

Условие

Дан треугольник $ABC$ и точка $M$ внутри него. Докажите, что хотя бы один из углов $MAB$, $MBC$, $MCA$ меньше или равен $30^{\circ}$.

Рис. 1.

Пусть точка $M$ внутри треугольника $ABC$ такова, что все углы из условия задачи больше $\displaystyle \frac{\pi}6$. Тогда она лежит в треугольнике $AED$ (см. рис. $1$).

Следовательно, достаточно доказать, что $\angle ECA \leqslant$ $\displaystyle \frac{\pi}6$.

Рассмотрим конфигурацию рисунка $2$, где $r_1=1$, $\angle BO_2M =$ $\displaystyle \frac{\pi}{3}$. Точка $A$ лежит на прямой $l$ в круге с центром $O_2$, точка $M$ — в треугольнике $ABC$. Покажем, что при этих условиях отрезки $BM$ и $O_1O_2$ имеют общую точку.

Рис. 2.

Пусть это не так (см. рис. $3$).

На рисунке $3$ прямая $MD$ — касательная к окружности с центром $O_1$.

Имеем: $O_1C \perp l$, треугольник $O_1CM$ правильный, отрезки $BM$ и $O_1C$ пересекаются. Так как угол $BMm$ равен $\displaystyle \frac{\pi}6$, то прямая $m$, являющаяся касательной к окружности с центром $O_2$, пересекается с $l$ в точке луча $DC$
$($либо $m \parallel l)$. Следовательно, и точка $A$ может лежать лишь на этом луче; значит, точка $M$ лежит вне треугольника $ABC$.

Получили: $O_1O_2 \cap BM \not= \varnothing$.

Для решения задачи достаточно доказать, что $r_2 \leqslant d(O_2, l)$.(Здесь
$d(O_2, l)$ — расстояние от точки $O_2$ до прямой $l$.) Пусть $d(O_2, l) \geqslant d(O_1, l)$. Имеем: $$r_2 = 2 \sin \alpha, d(O_2, l) = 1 + (\cos \alpha + \frac{\sqrt{3}}2 \cdot 2 \sin \alpha) \cos \left(\frac{2\pi}3 {-} \alpha \right) = \\ = \frac 12 + 2 \sin^2 \alpha \geqslant 2 \sin \alpha = r_2.$$

Рис. 3.

Случай $d(O_2, l) < d(O_1, l)$ рассматривается аналогично.

Замечание. Несложное доказательство допускает также и следующее утверждение. Пусть точка $M$ лежит внутри четырехугольника $ABCD$. Тогда хотя бы один из углов $MAB$, $MBC$, $MCD$, $MDA$ меньше или равен $\displaystyle \frac{\pi}4$. Докажите это утверждение самостоятельно.

В. Сендеров

М1654. Задача о медиане и биссектрисе неравнобедренного треугольника

Задача из журнала «Квант» (1998 год, 5 выпуск)

Условие

Через основание $L$ и $M$ биссектрисы $BL$ и медианы $BM$ неравнобедренного треугольника $ABC$ провели прямые параллельно, соответственно, сторонам $BC$ и $BA$ до пересечения с прямыми $BM$ и $BL$ в точка $D$ и $E$. Докажите, что угол $BED$ прямой.

Рис. 1

Первое решение

Обозначим $O=LD \cap ME$, и пусть точка $O$ лежит внутри треугольника $ABC$ (именно такое расположение было предложено рассмотреть на олимпиаде). $ME$ — медиана треугольника $MBC$ (Рис.1), а значит, и треугольника $MDL$, т.е. $OL=OD$. Далее $\angle DLB = \angle LBC,\; \angle MEL = \angle ABL = \angle LBC$. Получили: $\angle MEL = \angle DLB, \; OL= OE$.

Итак, в треугольнике $LED$ медиана $EO$ равна половине стороны $LD$. Следовательно, угол $DEL$ прямой, откуда сразу следует утверждение задачи.

Случай внешнего расположения точки $O$ рассматривается аналогично. А можно и не рассматривать этот случай, а просто сослаться на такое почти очевидное предложение.

Рис. 2

Лемма. Пусть $B$ и $C$ — произвольные точки на выходящих из $A$ лучах (Рис.2), $BD \parallel CK, \; CE \parallel BF$. Тогда и $ED \parallel KF$.

Следует из теоремы Фалеса; легко получить его с помощью векторов.

С помощью векторов нетрудно получить и естественное решение исходной задачи.

Второе решение

Рис. 3

Ниже мы будем рассматривать векторы в базисе $\{\vec{a} , \; \vec{c} \}, \;$ где $\vec{a} = \vec{BC},\; \vec{c} = \vec{BA}, \;$ длины этих векторов обозначим через $a$ и $c$ соответственно.

Имеем: $\displaystyle \vec{BL}=\vec{c} + \frac{c}{a+c} \Big( \vec{a} — \vec{c} \Big) = \frac{1}{a+c}\Big(a \vec{c} + c \vec{a} \Big)$.

Обозначим $\vec{BE} = \alpha \vec{BL}$, тогда $$ \alpha \vec{BL} + \vec{EM} = \vec{BM} =\frac{1}{2} \Big( \vec{a} + \vec{c} \Big).$$ Приравняем проекции левой и правой частей этого равенства на вектор $\displaystyle \vec{a}: \frac{\alpha c}{a+c} = \frac{1}{2}$, откуда $\displaystyle \alpha = \frac{a+c}{2c}$.

Аналогично, положив $\vec{BD} = \beta \vec{BM}$, получим $\beta \vec{BM}+\vec{DL}=\vec{BL}$; проектируя обе части этого равенства на $\vec{c}$, находим $\displaystyle \frac{\beta}{2}=\frac{a}{a+c}$.

Получили $\displaystyle \vec{BE} = \frac{\vec{a}}{2} + \frac{a}{2c} \vec{c},\; \vec{BD} = \frac{a}{a+c} \Big(\vec{a} + \vec{c} \Big)$. Таким образом, $\displaystyle\frac{\vec{BE}}{a} = \frac{1}{2}\left( \frac{\vec{a}}{a} + \frac{\vec{c}}{c}\right)$ — это высота треугольника, построенного на единичных векторах $\displaystyle \frac{\vec{a}}{a}$ и $\displaystyle \frac{\vec{c}}{c}$. Далее, $\displaystyle \frac{\vec{BE}}{a} = \frac{1}{a+c}\left(a \cdot \frac{\vec{a}}{a}+c \cdot \frac{\vec{c}}{c}\right)$ — (внутренняя) точка основания этого треугольника, отличная от основания высоты. Поэтому очевидно(Рис.3), что $\displaystyle \frac{\vec{BD}}{a}-\frac{\vec{BE}}{a}\bot\vec{BE}$ — и утверждение задачи доказано.

Разумеется, к этому решению можно было подойти более формально: вектор $\displaystyle \vec{BD}-\vec{BE}=\frac{a \left( a-c \right)}{2 \left( a+c \right)} \left(\frac{\vec{a}}{a}-\frac{\vec{c}}{c}\right) $ параллелен основанию треугольника. А можно было и воспользоваться понятием скалярного произведения векторов: $$\displaystyle \left( \vec{BD}, \vec{BE} \right) = \frac{a^2}{2} \left( 1+\frac{\Big( \vec{a}, \vec{c} \Big)}{ac} \right), $$ $$\displaystyle \left( \vec{BE}, \vec{BE} \right) = \frac{a^2}{2} \left( 1+\frac{\Big( \vec{a}, \vec{c} \Big)}{ac} \right).$$

А. Акопян, В. Сендеров

М1961. О точке в параллелограмме

Задача из журнала «Квант» (2005 год, 4 выпуск)

Условие

В параллелограмме $ABCD$ нашлась точка $Q$ такая, что $\angle AQB + \angle CQD=180°$. Докажите равенства углов: $\angle QBA = \angle QDA$ и $\angle QAD = \angle QCD$ (рис.1).

Рис. 1
Рис. 1

Треугольник $ABQ$ параллельно перенесем на вектор $\overrightarrow{\rm BC}$, и новое положение точки $Q$ обозначим через $P$ (рис. 2).
Рис. 2
Рис. 2
Ввиду условия задачи, около четырехугольника $QCPD$ можно описать окружность. Но тогда $$\angle DCP(= \angle QBA) = \angle PQD = \angle QDA,$$ а также $$\angle QCD = \angle QPD = \angle QAD,$$ т.е. утверждение доказано.

В.Произволов

М1803. О суммарной площади треугольников

Задача из журнала «Квант» (2002 год, 1 выпуск)

Условие

В квадрате $ABCD$ взяты точки $P$ и $Q$ такие, что $\angle{PAQ}=\angle{QCP} = 45^{\circ}$ (рис.$1$). Докажите, что суммарная площадь треугольников $PAQ, PCB$ и $QCD$ равна суммарной площади треугольников $QCP, QAD$ и $PAB.$

Рис.1

Доказательство

Симметрично отразим $\triangle{APB}$ относительно прямой $AP,$ а $\triangle{AQD}$ — относительно прямой $AQ.$ При этом отраженные точки $B$ и $D$ «склеятся» в одну точку $M$ (рис.$2$).

Рис.2
Значит, суммарная площадь треугольников $QCP, QAD$ и $PAB$ равна площади четырехугольника $APCQ$ плюс площадь треугольника $PQM.$ Симметрично отразим $\triangle{CPB}$ относительно прямой $CP,$ а $\triangle{CQD}$ — относительно прямой $CQ.$ При этом отраженные точки $B$ и $D$ «склеятся» в одну точку $N.$ Значит, суммарная площадь треугольников $PAQ, PCB$ и $QCD$ равны площади четырехугольника $APCQ$ плюс площадь треугольника $PQN.$
Остается заметить, что площади треугольников $PQM$ и $PQN$ равны, поскольку сами треугольники равны.

В.Произволов