M1677. Диагонали параллелограмма

Задача из журнала «Квант» (выпуск №5, 1999)

Условие

Диагонали параллелограмма $ABCD$ пересекаются в точке $O$. Окружность, проходящая через точки $A$, $O$ и $B$, касается прямой $BC$. Докажите, что окружность, проходящая через точки $B$, $O$ и $C$, касается прямой $CD$.

Решение

Углы $OAB$ и $OBC$ равны, так как первый вписан в окружность $AOB$, а второй образован касательной $BC$ и хордой $BO$ этой окружности (см. рисунок). Следовательно, углы $OBC$ и $OCD$ также равны, что эквивалентно утверждению задачи. Отметим, что параллелограмм, вершинами которого являются середины сторон данного, подобен исходному, поэтому задача допускает другую формулировку: в параллелограмме $ABCD$ углы $CAB$ и $DBC$ равны, $AD=1$, найти $AC$.

А.Заславский

М1743. Сумма

Задача из журнала «Квант» (2000 год, 5 выпуск)


Условие задачи

Найдите сумму $$\displaystyle \left [
\frac{1}{3}
\right ] + \left [
\frac{2}{3}
\right ] + \left [
\frac{2^{2}}{3}
\right ] + \cdots +\left [
\frac{2^{1000}}{3}
\right ]$$
$(\left[ a \right]$ — целая часть числа $a)$

Решение

Достаточно найти сумму дробных частей $$\displaystyle s_{1} = \left\{
\frac{1}{3}
\right\} + \left\{
\frac{2}{3}
\right\} + \left\{
\frac{2^{2}}{3}
\right\} + \cdots +\left\{
\frac{2^{1000}}{3}
\right\}.$$
Имеем: $$\displaystyle \left\{
\frac{1}{3}
\right\} = \frac{1}{3}, \left\{
\frac{2}{3}
\right\} = \frac{2}{3}, \left\{
\frac{4}{3}
\right\} = \frac{1}{3}, \left\{
\frac{8}{3} \right\} = \frac{2}{3}, \cdots$$
Следовательно, $\displaystyle s_{1} = 501 \cdot \frac{1}{3} + 500 \cdot \frac{2}{3} = 500\tfrac{2}{3}.$
Далее, $$s = \frac{1}{3} + \frac{2}{3} + \cdots + \frac{2^{1000}}{3} = \frac{1}{3}(2^{1001} — 1).$$
Получили: $\displaystyle s_{2} = \left [
\frac{1}{3}
\right ] + \left [
\frac{2}{3}
\right ] + \left [
\frac{2^{2}}{3}
\right ] + \cdots +\left [
\frac{2^{1000}}{3}
\right ] = s — s_{1} = \frac{1}{3}(2^{1001} — 2) — 500.$

Ответ: $\displaystyle \frac{2^{1001} — 2}{3} — 500.$

А.Голованов, В.Сендеров

М1874. Все решения уравнения

Задача из журнала «Квант» (2004 год, 1 выпуск)

Условие задачи

Найдите все решения уравнения $x^{y} — y^{x} = 1$ в натуральных числах $x$ и $y$.

Ответ: $x = 2$, $y = 1$ и $x = 3$, $y = 2$.

Решение

Пусть $x = 2$. Тогда $2^{y} = y^{2} + 1$. Поскольку $y^{2} + 1$ не делится на $4$, то решений, кроме $(2, 1)$, нет.
При $y = 1$ имеем $x = 2$.
Пусть $y = 2.$ Тогда Пусть $\left(x + 1 \right) \cdot \left(x — 1 \right) = 2^{x},$ откуда $\left(x — 1 \right) = 2,$ $x = 3,$
Пусть $x \geqslant 3$, $y \geqslant 3.$ Рассмотрим функцию
$$f(t) = a^{t} — t^{a} = \left(a^{\frac{t}{a}} — t \right) \cdot \left(\left(a^{\frac{t}{a}} \right)^{a — 1} + … + t^{a — t} \right),$$
где $a \geqslant 3$ — целое число, $t \geqslant a$. Имеем $f(a) = 0;$ поскольку $\varphi(t) = a^{\frac{t}{a}} — t$ — возрастающая неотрицательная функция, то и [latex]f(t)[/latex] возрастает.
Получили: при $t \geqslant a + 1$
$$f(t) \geqslant f(a + 1) = a^{a + 1} — (a + 1)^{a} \geqslant 1.$$
Последнее неравенство строгое: при $a^{a + 1} — (a + 1)^{a} = 1$ было бы $m \cdot a = 2,$ где $m$ $\epsilon$ $\mathbb{Z}.$
Окончательно: $x^{y} — y^{x} \neq 1.$
Рассуждая несколько по-иному, нежели выше, можно сразу получить числовую оценку выражения $a^{t} — t^{a}.$ Именно, пусть $a \geqslant 3,$ $z$ $\epsilon$ $\mathbb{N},$ Тогда, используя легко доказываемые неравенства $(1 + t)^{\frac{1}{t}} < e < 2,8,$ получаем
$$a^{a+z} — \left(a+z \right)^{a} = a^{a} \cdot \left(a^{z} — \left(\left(1 + \frac{z}{a} \right)^{\frac{a}{z}} \right)^{z} \right) >$$ $$>a^{a} \cdot \left(a^{z} — e^{z} \right) \geqslant a^{a} \cdot \left(a — e \right) > 3^{3} \cdot 0,2 > 1.$$
Вот и все.

В. Произволов, В. Сендеров

М1633. Биссектрисы

Задача из журнала «Квант» (1998 год, 2 выпуск)


Условие задачи

В треугольнике $ABC$ отрезки $CM$ и $BN$ – медианы, $P$ и $Q$  – точки соответственно на $AB$ и $AC$ такие, что биссектриса угла $C$ треугольника одновременно является биссектрисой угла $MCP$, а биссектриса угла $B$ – биссектрисой угла $NBQ$. Можно ли утверждать, что треугольник $ABC$ равнобедренный, если
а) $BP = CQ$;
б) $AP = AQ$;
в) $PQ || BC$;
Отрезки $BQ$ и $CP$ называются симедианами.

Решение

Теорема

$AB = c$, $AC = b$, $AS$ – симедиана. Тогда $\displaystyle \frac{BS}{SC}=\frac{c^{2}}{b^{2}}$.

Пусть $AM$ – медиана; обозначим $\alpha = \angle BAS = \angle CAM$, $\angle MAS = \beta$ (рис.1).
Имеем: $\displaystyle \frac{BS}{SC}=\frac{S_{ABS}}{S_{ASC}} = \frac{c\sin\alpha }{b(\sin\alpha +\beta)}$, $\displaystyle 1 = \frac{S_{ABM}}{S_{AMC}} = \frac{c\sin(\alpha + \beta)}{b\sin \alpha}$.
Значит, $\displaystyle \frac{BS}{SC}=\frac{c^{2}}{b^{2}}$.

а) Да. Перепишем равенство $BP = CQ$, пользуясь теоремой:$$b^{3} + ba^{2} = c^{3} + ca^{2}.$$
Поскольку $f(x)= x^{3}+xa^{2}$ – монотонная функция, получаем, что $b=c$.
К этому равенству можно прийти и так: $b^{3}-c^{3} = a^{2}(c-b);$ значит, при $b\neq c$ будет $b^{2} + bc + c^{2} = -a^{2};$ но $b^{2} + bc + c^{2} \geqslant 0.$
в) Да. $\displaystyle \frac{AQ}{QC}=\frac{AP}{PB}$, т.е. $\displaystyle \frac{c^{2}}{a^{2}}=\frac{b^{2}}{a^{2}}.$

б) Нет. $\displaystyle AP = c \cdot \frac{b^{2}}{b^{2} + a^{2}}$, $\displaystyle AQ = b \cdot \frac{c^{2}}{c^{2} + a^{2}}$.
Перепишем $AP = AQ: bc(b — c) = a^{2}(b — c)$. Значит, в неравнобедренном треугольнике таком, что $a^{2} = bc$, имеем $AP = AQ$.

  1. Если A – наибольший или наименьший угол треугольника, $AP = AQ$, то треугольник равнобедренный.
  2. Неравнобедренный треугольник такой, что $AP = AQ$ – это треугольник со сторонами вида $d, dq, dq^{2}$, где $q \neq 1$.
  3. Пункт б) (именно он предлагался на Турнире городов) можно решить и без помощи теоремы, пользуясь лишь соображениями непрерывности. Это можно сделать по такой, например, схеме.
    Пусть для треугольника $ABC$ будет $AP > AQ$, а для треугольника $ {A}'{B}'{C}’$ ${AP}’ < {AQ}’$. «Перетянем» $A$ в ${A}’$, $B$ в ${B}’$, $C$ в ${C}’$; по дороге нам встретится треугольник $A^{\prime\prime}B^{\prime\prime}C^{\prime\prime}$ такой, что $A^{\prime\prime}P^{\prime\prime} = A^{\prime\prime}Q^{\prime\prime}$. Если возникающие при этом «перетягивании» треугольники не являются равнобедренными, то задача решена.

Приведем пример реализации этой схемы.
Рассмотрим треугольник рисунка 2:

$$\displaystyle AB = 1, \angle A = \frac{\pi}{3}, \angle B = \frac{\pi}{2};$$ $CD$– биссектриса.
Так как $\displaystyle \frac{AD}{BD} = \frac{AC}{BC}$, то $\displaystyle AD > \frac{1}{2}$: следовательно, $\displaystyle AP > \frac{1}{2}.$
Далее, $\displaystyle \angle ABQ = \angle NBC = \frac{\pi}{6}$; значит, $\displaystyle AQ = \frac{1}{2}$.

Рассмотрим теперь треугольник рисунка 3:
$$\angle A = \frac{\pi}{4}, \angle B = \frac{\pi}{2}, BC = 1.$$ Имеем: $\displaystyle AQ = \frac{\sqrt{2}}{2}$; обозначим через G точку пересечения медиан, из подобных треугольников $CQG$ и $CBP$ получаем $\displaystyle \frac{BP}{BC} = \frac{GQ}{QC} = \frac{GQ}{BQ} = \frac{1}{3}$. Окончательно: $\displaystyle AP = 1 – BP = \frac{2}{3} < \frac{\sqrt{2}}{2} = AQ$.

В. Сендеров

М1736. Шахматные кони

Задача из журнала «Квант» (2000 год, 4 выпуск)

Условие

Какое наибольшее число коней можно расставить на доске $5\times5$ так, чтобы каждый из них бил ровно двух других?

Решение

Рисунок 1

На рисунке $1$ приведено расположение $16$ коней, удовлетворяющее условию задачи. Покажем, что большее число коней расставить нельзя. Заметим, что количество коней, расположенных на черных клетках, равно количеству коней, расположенных на белых клетках. Значит, если число пустых белых клеток равно $n$, то число пустых черных клеток равно $n+1$.

Рисунок 2

Заметим, что для оптимального расположения коней центральная клетка пуста, так как в противном случае из восьми клеток, которые бьет конь, стоящий на центральном поле, ровно шесть пустых белых. Отсюда $n\geqslant6$, и число коней не превосходит $25-n-(n+1)\leqslant12$.

Рисунок 3

Разобьем белые клетки на четыре группы так, как показано на рисунке $2$ (клетки одной группы отмечены одинаковыми цифрами). Покажем, что для оптимального расположения по крайней мере одна клетка каждой группы пуста, отсюда будет следовать, что $n\geqslant4$ . Предположим противное: например, что на всех клетках группы $3$ стоят кони. Обозначим их буквами $a$, $b$ и $с$ (рис.3). Конь, стоящий на клетке $а$, бьет клетки $f$, $d$ и центральную. Но, как было показано выше, центральная клетка пуста, значит, на клетках $f$ и $d$ стоят кони.

Аналогично можно показать, что на клетках $e$ и $g$ тоже стоят кони. Но тогда конь, стоящий на клетке $c$, бьет четырех коней, расположенных на $d$, $e$, $f$ и $g$, что противоречит условию.

Итак, число пустых белых клеток $n\geqslant4$. Значит, число коней не больше

$25-n-(n+1)\leqslant12$.

Ответ: $16$.

М. Горелов