Сторона и ориентация поверхности. Односторонние и двусторонние поверхности. Край поверхности.

Определим понятие стороны поверхности. Выберем на гладкой поверхности (замкнутой или ограниченной гладким контуром) точку M_{0} и проведем в ней нормаль к поверхности, выбрав для нее определенное направление (одно из двух возможных). Проведем по поверхности замкнутый контур, начинающийся и заканчивающийся в точке M_{0}. Рассмотрим точку M, обходящую этот контур, и в каждом из ее положений проведем нормаль того направления, в которое непрерывно переходит нормаль из предыдущей точки. Если после обхода контура нормаль вернется в точке M_{0} в первоначальное положение при любом выборе точки M_{0} на поверхности, поверхность называется двусторонней. Если же направление нормали после обхода хотя бы одной точки изменится на противоположное, поверхность называется односторонней. Поверхность может быть задана уравнением F\left ( x,y,z \right ) = 0, не разрешенным относительно ни одной из переменных (неявное задание). При этом поверхность представляет собой множество всех точек. Например, уравнение x^{2}+y^{2}+z^{2}-R^{2} = 0 задает сферу радиуса R с центром в начале координат. Наконец, поверхность может быть задана параметрически: $$x = \varphi \left ( u,v \right ), y = \psi \left ( u,v \right ), z = \chi \left ( u,v \right ), \forall \left ( u,v \right )\in g,$$ где \psi ,\chi ,\varphi− непрерывные функции в области g. Переменные $u$ и $v$ называются параметрами.
На рисунке ниже изображен вектор нормали к поверхности $A$.
188

Определение

Совокупность всех точек поверхности с одинаковым направлением нормали называется стороной поверхности.

Дальше введем понятие ориентации поверхности. Рассмотрим незамкнутую гладкую двустороннюю поверхность S, ограниченную контуром L, и выберем одну сторону этой поверхности.

Определение

Назовем положительным направление обхода контура L, при котором движение по контуру происходит против часовой стрелки относительно наблюдателя, находящегося в конечной точке нормали к какой-либо точке поверхности S, соответствующей выбранной стороне поверхности. Обратное направление обхода контура назовем отрицательным.

Определение

... показать

Список литературы

Небольшая викторина

Вычисление криволинейных интегралов второго рода

Перед прочтением данной статьи желательно ознакомиться с темой Определение криволинейных интегралов второго рода и их свойства. Физический смысл

Вычисление криволинейных интегралов II рода

Если $\Gamma$ — кусочно гладкая кривая заданная уравнением $r=r(t)$ $(\alpha\leq t\leq\beta)$, а функции ${\varphi }_{i}$ $(i=1,…,n)$ непрерывные вдоль кривой $\Gamma$, то существует криволинейный интеграл II рода $\int\limits_{\Gamma}^{}(F,\,dr)$ и справедливо равенство:
$$\int\limits_{\Gamma}(F,\,dr)=$$ $$=\int\limits_{\alpha}^{\beta}\sum\limits_{i=1}^{n}{\varphi}_{i}({x}_{1}(t),\ldots,{x}_{n}(t)){x’}_{i}(t)\,dt.$$

Примеры

  1. Вычислить криволинейный интеграл $\int\limits_{\Gamma}^{}(y\,dx-x\,dy)$, где $\Gamma$ — дуга окружности $x^2+y^2=1$, которая начинается в точке $(1,0)$ и заканчивается в точке $(0,1)$.
    Параметрическое представление кривой $\Gamma$ имеет вид $\Gamma: x=\cos t, y=\sin t$ $(0\leq t\leq\frac{\pi}{2})$. Отсюда,

    $$\int\limits_{\Gamma}^{}(y\,dx-x\,dy)=$$ $$=\int\limits_{0}^{\frac{\pi}{2}}\left[\sin t(-\sin t)-\cos t\cdot \cos t\right]\,dt=$$ $$=-\int\limits_{0}^{\frac{\pi}{2}}\,dt=-t \bigg|_{0}^{\frac{\pi}{2}}=$$ $$=-\left( \frac{\pi}{2}-0 \right)=-\frac{\pi}{2}.$$

  2. Вычислить криволинейный интеграл $\int\limits_{\Gamma}^{}(ydx-xdy)$, где $\Gamma$ — отрезок, который начинается в точке $(1,0)$ и заканчивается в точке $(0,1)$.
    Параметрическое представление кривой $\Gamma$ имеет вид $\Gamma: x=1-t, y=t$ $(0\leq t\leq1)$. Отсюда,

    $$\int\limits_{\Gamma}^{}\left(y\,dx-x\,dy\right)=$$ $$=\int\limits_{0}^{1}[t(-1)-(1-t)\cdot 1]\,dt=$$ $$=-\int\limits_{0}^{1}\,dt=-t \bigg|_{0}^{\frac{\pi}{2}}=-(1-0)=-1.$$

  3. Вычислить криволинейный интеграл $\int\limits_{\Gamma}^{}(y\,dx+x\,dy)$, где $\Gamma$ — дуга окружности $x^2+y^2=1$, которая начинается в точке $(1,0)$ и заканчивается в точке $(0,1)$.
    Параметрическое представление кривой $\Gamma$ имеет вид $\Gamma: x=\cos t, y=\sin t$ $(0\leq t\leq\frac{\pi}{2})$. Отсюда,

    $$\int\limits_{\Gamma}^{}(y\,dx+x\,dy)=$$ $$=\int\limits_{0}^{\frac{\pi}{2}}[\sin t(-\sin t)+\cos t\cdot \cos t]\,dt=$$ $$=\int\limits_{0}^{\frac{\pi}{2}}[{cos}^{2}t-{sin}^{2}t]\,dt =\int\limits_{0}^{\frac{\pi}{2}}\cos 2t\,dt=$$ $$=\frac{\sin 2t}{2} \bigg|_{0}^{\frac{\pi}{2}}=\frac{\sin \pi}{2}-\frac{\sin 0}{2}=0.$$

Вычисление криволинейных интегралов второго рода

Чтобы убедиться в том что вы усвоили данный материал советую пройти этот тест.


Таблица лучших: Вычисление криволинейных интегралов второго рода

максимум из 7 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Представление функции интегралом Фурье

Интеграл Фурье как разложение в сумму гармоник

Интегральную формулу Фурье можно переписать следующим образом:
$$f\left(x\right)=\intop _{ 0 }^{ +\infty }{ \left[ a\left(\lambda \right)\cos { \lambda x } +b\left(\lambda \right)\sin { \lambda x } \right] d\lambda },\quad\left(\ast\right)$$ где
$$a\left(\lambda \right)=\frac { 1 }{ \pi } \intop _{ -\infty }^{ +\infty }{ f\left(\xi \right)\cos { \lambda \xi } d\xi } ,$$ $$b\left(\lambda \right)=\frac { 1 }{ \pi } \intop _{ -\infty }^{ +\infty }{ f\left(\xi\right)\sin { \lambda \xi } d\xi }.$$
Равенство $\left( \ast \right)$ аналогично разложению функции в тригонометрический ряд Фурье, а выражения $a\left(\lambda \right), b\left(\lambda \right)$ аналогичны формулам для коэффициентов Фурье.

Замечание. Для удобства дальнейших вычислений формула $\left(\ast\right)$ может быть упрощена, а именно:

  • Если $f\left(x\right)$ — чётная функция, то $$a\left(\lambda \right)=\frac { 2 }{ \pi } \intop_{ 0 }^{ +\infty }{ f\left(\xi\right)\cos { \lambda \xi } d\xi } ,$$ а $b\left(\lambda \right)$ принимает значение $0.$ Тогда формулу $\left(\ast\right)$ можно записать в виде $$f\left(x\right)=\frac { 2 }{ \pi } \intop_{ 0 }^{ +\infty }{ \cos { \lambda x } d\lambda } \intop_{ 0 }^{ +\infty }{ f\left(\xi\right)\cos { \lambda \xi } d\xi }.$$ Это выражение называется косинус-формулой Фурье.
  • Для нечётной $f\left(x\right)$ получаем соответственно, что $a\left(\lambda\right)$ обращается в нуль, а $$b\left(\lambda\right)=\frac { 2 }{ \pi } \intop_{ 0 }^{ +\infty }{ f\left(\xi\right)\sin { \lambda \xi } d\xi },$$ поэтому исходная формула приобретает вид $$f\left(x\right)=\frac { 2 }{ \pi } \intop_{ 0 }^{ +\infty }{ \sin { \lambda x } d\lambda } \intop_{ 0 }^{ +\infty }{ f\left(\xi\right)\sin { \lambda \xi } d\xi }.$$ Таким образом, мы получили синус-формулу Фурье.

Замечание. Интегральная формула Фурье имеет эквивалентную ей комплексную формулу интеграла Фурье $$f\left( x \right) =\frac { 1 }{ 2\pi } \int\limits _{ -\infty }^{ +\infty }{ d\lambda } \int _{ -\infty }^{ +\infty }{ f\left( \xi \right) { e }^{ i\lambda \left( x-\xi \right) }d\xi } .$$

Пример

Представить следующую функцию интегралом Фурье: $$f\left(x\right)=\begin{cases} 1,\quad если \quad \left| x \right| < 1; \\ 0,\quad если \quad \left| x \right| > 1. \end{cases}$$

Решение показать

Литература

Тестирование. Представление функции интегралом Фурье

Тесты помогут понять насколько хорошо был усвоен материал.

Критерий Коши равномерной сходимости несобственных интегралов, зависящих от параметра

Для равномерной сходимости несобственного интеграла $\int\limits_a^b f(x,y)dx$ необходимо и достаточно выполнение условия Коши. А именно: $\forall \varepsilon > 0 \, \exists \eta < b$ такое, что $\forall \eta^\prime,\eta^{\prime\prime} \epsilon (\eta,b)$ и $\forall y$ $\epsilon$ $Y$ выполнялось следующее неравенство $$\left|\int\limits_{\eta^\prime}^{\eta^{\prime\prime}}f(x,y)dx \right| <\varepsilon.$$

Доказательство

Необходимость

Пусть интеграл $\int\limits_a^b f(x,y)dx$ равномерно сходится по параметру $y$ $\epsilon$ $Y$. Из определения получаем, что $\forall\varepsilon > 0$ найдется такое $\eta$ $\epsilon$ $[a,b)$ , что $\forall \eta^\prime$ $\epsilon$ $[b,\eta)$ и для всех $y$ $\epsilon$ $Y$ выполнялось следующее неравенство
$$\left| \int\limits_{\eta^\prime}^{b}f(x,y)dx \right| < \frac{\varepsilon}{2}.$$ При $\eta^\prime , \eta^{\prime\prime}$ $\epsilon$ $[\eta,b)$, $y$ $\epsilon$ $Y$ получим такое неравенство $$\left| \int\limits_{\eta^\prime}^{\eta^{\prime\prime}}f(x,y)dx \right| = \left| \int\limits_{\eta^\prime}^{b}f(x,y)dx — \int\limits_{\eta^{\prime\prime}}^{b}f(x,y)dx \right| \leq $$ $$\leq \left|\int\limits_{\eta^\prime}^{b}f(x,y)dx\right| + \left|\int\limits_{\eta^{\prime\prime}}^{b}f(x,y)dx\right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} =\varepsilon,$$ а значит, что условие Коши выполнено.

Достаточность

Положим, что условие Коши выполняется. А это означает, что в силу критерия Коши несобственный интеграл $\int\limits_a^b f(x,y)dx$ сходится $\forall y$ $\epsilon$ $Y$. Докажем равномерную сходимость на $Y$. Рассмотрим неравенство $$\left|\int\limits_{\eta^\prime}^{\eta^{\prime\prime}}f(x,y)dx \right| <\varepsilon,$$ в котором устремим $\eta^{\prime\prime}$ к $b$, при этом $\eta^{\prime\prime} < b$. В результате для любого $\eta^{\prime} > \eta$ и $y$ $\epsilon$ $Y$ получаем следующее: $$\left|\int\limits_{\eta^{\prime}}^{b}f(x,y)dx \right| \leq\varepsilon,$$ что и означает равномерную сходимость интеграла $\int\limits_a^b f(x,y)dx$ на $Y$. $\Box$

Пример

Проверить интеграл на равномерную сходимость.

$$\int\limits_{0}^{+\infty} e^{-yx^{2}}dx$$

Решение показать

Список литературы

Тест

Практические задания из данного теста были позаимствованы из сборника задач и упражнений по математическому анализу Б.П. Демидовича.

Рекомендую проверить насколько хорошо усвоен материал, пройдя следующий тест.

Таблица лучших: Критерий Коши равномерной сходимости несобственных интегралов, зависящих от параметра

максимум из 14 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Равномерная сходимость и непрерывность

Теорема (О связи равномерной сходимости функциональной последовательности с непрерывностью)

Если последовательность ${f_{n}(x)}$ определена на отрезке $[a,b],$ равномерно сходится к функции $f(x)$ на этом отрезке, и все члены последовательности непрерывны в точке $x_{0} \in [a,b],$ то функция $f(x)$ непрерывна в точке $x_{0}$.

Доказательство

По определению равномерной сходимости: $$\forall \varepsilon>0 \exists n_{\varepsilon} \in \mathbb{N}: \forall n \ge n_{\varepsilon} \forall x \in [a,b] \Rightarrow |f_{n}(x) — f(x)| < \varepsilon.$$

Докажем от противного. Предположим, существует точка разрыва предельной функции $x_{0} \in [a,b].$ Сразу отметим, что функция $f(x)$ определена на всем отрезке $[a,b],$ а значит и в точке $x_{0}.$ Тогда из того, что $x_{0}$ — точка разрыва, следует, что предел функции $f(x)$ хотя бы с одной из сторон не равен значению функции в этой точке. При этом, из непрерывности функции $f_{n}(x)$ следует, что ее значение в точке $x_{0}$ равно ее пределу в этой точке.

Рассмотрим случай, когда $x_{0} \in [a,b)$ и $\lim\limits_{x \to x_{0}+0} f(x) \ne f(x).$ Случай, когда $x_{0} \in (a,b]$ и $\lim\limits_{x \to x_{0}-0} f(x) \ne f(x),$ доказывается аналогично.

$$\begin{cases} \left| \lim\limits_{x \to x_{0}+0} f_{n}(x) — \lim\limits_{x \to x_{0}+0}f(x) \right| < \varepsilon \\ \left|f_{n}(x_{0}) — f(x_{0}) \right| < \varepsilon \end{cases}$$

Зафиксируем $\varepsilon = \frac{ \left| f(x_{0}) — \lim\limits_{x \to x_{0}+0} f(x) \right| }{3}.$ Тогда:
$$\begin{cases} \left| \lim\limits_{x \to x_{0}+0} f_{n}(x) — \lim\limits_{x \to x_{0}+0} f(x) \right| < \frac{ \left|f(x_{0}) — \lim\limits_{x \to x_{0}+0} f(x) \right|}{3} \\ \left|f_{n}(x_{0}) — f(x_{0}) \right| < \frac{\left|f(x_{0}) — \lim\limits_{x \to x_{0}+0} f(x) \right|}{3}\end{cases},$$
что невозможно при $f_{n}(x_{0}) = \lim\limits_{x \to x_{0}} f_{n}(x),$ т.е. при непрерывности функции $f_{n}(x)$ в точке $x_{0}.$ Мы пришли к противоречию. Предположение неверно. Теорема доказана.

Иллюстрация и замечание к теореме

... показать

Теорема (О связи равномерной сходимости функционального ряда с непрерывностью)

Если ряд $\sum\limits_{n=1}^ \infty u_{n}(x)$ определен на отрезке $[a,b],$ равномерно сходится к функции $S(x)$ на этом отрезке, и все члены ряда непрерывны в точке $x_{0} \in [a,b],$ то функция $S(x)$ непрерывна в точке $x_{0}.$

Доказательство

Всякая частичная сумма ряда $\sum\limits_{n=1}^ \infty u_{n}(x)$ непрерывна в точке $x_{0}$, как сумма непрерывных. Тогда последовательность частичных сумм ряда, по предыдущей теореме, сходится к функции, непрерывной в точке $x_{0}.$ Теорема доказана.

Литература:

Равномерная сходимость и непрерывность

Задания по теме «Равномерная сходимость и непрерывность».