M683. О расположении кружков разных цветов так, чтобы любые два касающиеся были разными

Задачa из журнала «Квант» (1981 год, 5 выпуск)

Условие

Несколько кружков одинакового размера положили на стол так, что никакие два не перекрываются. Докажите, что кружки можно раскрасить в четыре цвета так, что любые два касающиеся кружка будут окрашены в разные цвета. Найдите расположение кружков, при котором трех цветов для такой раскраски недостаточно.

Доказательство

Доказательство возможности требуемой раскраски проведем индукцией по числу кружков n.
При n\leq 4 утверждение очевидно. Предположим, что оно справедливо для любого расположения k кружков. Пусть на столе лежит k+1 кружков. Зафиксируем на плоскости произвольную точку M и рассмотрим кружок, центр O которого находится на наибольшем расстоянии от M (если таких кружков несколько, возьмем любой из них). Нетрудно убедиться, что выбранного кружка касается не более двух других (центры всех кружков лежат в круге \left ( M, \left | OM \right | \right ) — рис. 1).
Отбросим кружок с центром O и раскрасим нужным образом в четыре цвета оставшиеся k кружков (по предположению индукции это можно сделать). Вернем теперь кружок с центром O на место. Поскольку он касается не более трех из уже покрашенных кружков, его можно раскрасить в тот цвет, который не был использован при раскраске касающихся его соседей.

Утверждение доказано.

Рисунок 1.

На рисунке 2 изображены 11 кружков, для нужной раскраски которых трех цветов недостаточно. Действительно, предположив, что эти кружки можно раскрасить тремя цветами, получим, что кружки A, B, C, D, E должны быть окрашены одинаково. Но это невозможно, поскольку кружки A и E касаются.

Рисунок 2.

М623. Задача об осях симметрии куба, правильной треугольной пирамиды и нечетности осей симметрии многогранника.

Задача из журнала «Квант» (1980 год, 5 выпуск)

Условие

а) Сколько осей симметрии имеет куб? Правильная треугольная пирамида?

б)* Докажите, что если некоторый многогранник имеет $k$ осей симметрии $(k \geq 1)$, то $k$ нечетно.

Решение

а) Нетрудно указать девять осей симметрии куба. Это — прямые, соединяющие центр куба $O$ с центрами граней (их три: $Ox$, $Oy$, $Oz$ на рисунке $1$) и с серединами ребер (их шесть).

Других осей симметрии у куба нет: это можно доказать, опираясь на такое наблюдение: при любом самосовмещении куба каждая из трех осей $Ox$, $Oy$, $Oz$ должна отображаться на одну из этих же осей, причем если это само совмещение — симметрия (поворот на $180 ^\circ$) $S_l$ относительно некоторой прямой $l$, отличной от $Ox$, $Oy$ и $ Oz$, то одна из этих трех осей должна переходить сама в себя, а две остальные — друг в друга.

У правильного тетраэдра три оси симметрии — прямые, соединяющие середины его ребер. Чтобы убедится в этом, удобно достроить тетраэдр до куба, проведя через каждое ребро тетраэдра плоскость, параллельную противоположному ребру (рис. $2$). Ясно, что любое самосовмещение тетраэдра будет также самосовмещением этого описанного куба. Из девяти осевых симметрий, отображающих куб на себя, лишь три будут переводить в себя тетраэдр.

б) Пусть дан многогранник $M$, у которого более одной оси симметрии.

Лемма $1$ Если $l$ и $m$ — оси симметрии многогранника $M$, то $S_l (m) = m’$ — также ось симметрии $М$.

В самом деле, если точки $P$ и $P’$ многогранника $M$ симметричны относительно $m$, то $S_l (P)$ и  $S_l (P’)$ будут симметричными относительно $m’$. Короче: $S_{m^{‘}}  = S_l O S_m O S_l$.

Лемма $2$ Если $l$ и $m$ — оси симметрии многогранника $M$, пересекающиеся в точке $O$ и перпендикулярные друг к другу, то прямая $n$, перпендикулярная им обоим и проходящая через точку $O$, также служит осью симметрии $M$.

Действительно, $S_n = S_m O S_l$. Это легко проверить, приняв данные прямые за оси координат, или построив прямоугольный параллелепипед с центром в точке $O$ и осями симметрии $l$, $m$, $n$ с произвольной вершиной $P$ (рис. $3$).

Леммы $1$ и $2$ позволяют, фиксировав какую-то одну ось симметрии $l$, разбить все остальные на пары: если $m$ удовлетворяет условия леммы $2$, то пару с ней образует $n$, а если нет, то $m’ = S_l(m) \ne m$. Отсюда сразу следует утверждение задачи б).

Возникает естественный вопрос: какое вообще (конечное) множество прямых может быть множеством всех осей симметрии некоторого многогранника?

Различные примеры даются множеством осей симметрии $n$-угольной правильной призмы (здесь количество осей $p=n$ при $n$ нечетном и $p=n+1$ при $n$ четном), тетраэдра (или прямоугольного параллелепипеда с разными ребрами, $p=3$), куба (или октаэдра $p=9$) и додекаэдра (или икосаэдра, $p=15$). Попробуйте доказать, что других множеств осей симметрии (состоящих более чем из одной прямой) не бывает. Конечно, тут не обойтись без такой очень полезной леммы, которую многие читатели применили и в решении задачи б).

Лемма $3$ Оси симметрии любого многогранника пересекаются в одной точке.

Предположим, что $l$, $m$ — непересекающиеся оси симметрии многогранника $M$. Пусть $n$ — общий перпендикуляр $l$, $m$; рассмотрим прямоугольную систему координат с началом в точке $O = l \cap n$, с осью $Oz$ направленной по лучу $OA$, где $A = n \cap m$; пусть $|OA| = a$. Тогда при симметрии относительно оси $l$ координата $z$ любой точки переходит в $(-z)$, а при симметрии относительно $m$ — в $(2a-z)$. Поэтому при композиции этих двух симметрий $z$ изменяется на $2a$. Повторяя эту композицию достаточное число раз, мы «выгоним» любую точку за пределы многогранника $M$.  Противоречие!

Вот еще более короткое доказательство леммы $3$ (правда, использующее понятие, заимствованное из механики): пусть $O$ — центр масс одинаковых грузиков, помещенных в вершинах многогранника $M$; ясно, что при любом самосовмещении многогранника $M$ грузики лишь меняются местами, поэтому точка $O$ переходит в себя; в частности, все оси симметрии многогранника $M$ проходят через точку $O$.

Н. Васильев, В. Сендеров, А. Сосинский

Задача из журнала «Квант» (2001 год, 5 выпуск) M1788

Весёлый треугольник

Задача

В треугольнике $ABC$ точка $I$ — центр вписанной окружности $W$,$Q$,$D$ — точки ее касания со сторонами $BC$,$CA$,$AB$ (см. рисунок выше). Прямые $AB_1$ и $BQ$ пересекаются в точке $P$, $AC$ и $WD$ — в точке $M$, $BC$ и $QD$ — в точке $N$. Докажите, что прямые $IP$ и $MN$ перпендикулярны.

Решение

Построим на отрезках $IA$ и $IW$ как на диаметрах окружности. Отличная от $I$ точка $Y$ их пересечения будет основанием перпендикуляра, опущенного из $I$ на $AW$, а прямая $IN_1$ проходит через $N$, так как $IY$ — общая хорда этих двух окружностей, $BC$ — общая касательная первой из них и вписанной окружности треугольника, $QD$ — общая хорда второй и вписанной окружностей. Из подобия прямоугольных треугольников $INW$ и $IWY$ получаем $IN \cdot IY = r^2$, где $r$ — радиус вписанной окружности. Аналогично получаем, что прямая $IM$ перпендикулярная $BQ$, и для точки пересечения $M_1$: $IM \cdot IM_1 = r^2$. Следовательно, треугольник $IM_1Y$ подобен треугольнику $INM$ и вписан в окружность с диаметром $IP$. Поэтому $\angle M_1IP + \angle INM = \angle M_1YP + \angle IYM_1 = 90^{\circ}.$

Что и хотели доказать.

А. Заславский

M1705. Шахматная сфера

Задача из журнала «Квант» (1999 год, 5 выпуск)

Условие

Через точку внутри сферы проведены три попарно перпендикулярные плоскости, которые рассекли сферу на 8 криволинейных треугольников. Эти треугольники закрашены в шахматном порядке в черный и белый цвета (рис.1). Докажите, что площадь черной части сферы равна площади ее белой части.

Решение

Докажем равносоставленность черной и белой частей сферы, тем самым будет доказана их равновеликовость. Обозначим через $\alpha$, $\beta$ и $\gamma$ плоскости, рассекающие сферу, а через $\overline{\alpha}$, $\overline{\beta}$ и $\overline{\gamma}$ — плоскости, соответственно симметричные им относительно центра сферы. Эти шесть плоскостей рассекают сферу на попарно равные куски так, что один из них белый, а другой черный в каждой паре. Однако этот факт легко услышать, но труднее увидеть.

Чтобы увидеть было легче, будем следовать принципу постепенности. Между плоскостями $\alpha$ и $\overline{\alpha}$, которые будем считать горизонтальными, расположен сферический пояс, выше и ниже которого располагаются две сферические «шапки». Заметим, что плоскости $\beta$, $\overline{\beta}$, $\gamma$ и $\overline{\gamma}$ разрезают эти шапки на части так, что каждая белая часть одной шапки симметрична черной части другой шапки относительно горизонтальной плоскости $\pi$, проходящей через центр сферы.

Осталось разобраться со сферическим поясом. Для этого воспроизведем на рисунке сечение сферы плоскостью $\pi$, на котором показаны следы секущих плоскостей и следы черных и белых кусков сферического пояса (рис.2).

Одинаковым номерам соответствуют следы тех кусков, которые симметричны и имеют разные цвета.

Напоследок заметим, что объектом утверждения задачи может выступать не только сфера, но любая поверхность выпуклого тела, имеющего три попарно перпендикулярные плоскости симметрии (например, эллипсоид или правильный октаэдр; случай с октаэдром особенно интересен, поскольку у него существуют различные попарно перпендикулярные тройки плоскостей симметрии). Но в указанном смысле также любопытен и случай с обыкновенным кубом (рис.3).

В. Произволов

М1759. Остроугольный прямоугольник

Задача из журнала «Квант» (2001 год, 4 выпуск)

Условие

Имеется остроугольный треугольник с меньшей стороной $c$ и противолежащим ей углом $\gamma$ . Известно, что треугольник можно раскрасить в два цвета так, что расстояние между любыми двумя точками одного цвета будет не больше $с$. Докажите, что $\gamma \geqslant 36^\circ$.

Решение

Рисунок к задачеРассмотрим треугольник $ABC$ с длинами сторон $AB=c$, $BC=a$, $CA=b$, причём $a \geqslant b \geqslant c$; углы при вершинах $A$, $B$ и $C$ обозначим соответственно через $\alpha$, $\beta$ и $\gamma$.

Пусть точка $K$ — середина стороны $BC$, точка $A_1$ — пересечение серединного перпендикуляра к $BC$ и стороны $AC$ (см. рисунок).

Из условия задачи следует, что в указанной раскраске вершины $B$ и $C$ должны быть разного цвета, поскольку расстояние между ними больше $c$ (если оно равно $c$, то треугольник равносторонний, и для него утверждение задачи выполняется). Значит, точка $A_1$ должна иметь одинаковый цвет с одной из точек $B$ или $C$.

В любом случае должно выполняться неравенство $AB \geqslant A_1C$, которое равносильно следующим неравенствам:
$$c \geqslant \frac{a}{2\cos\gamma}\;;\;\frac{\sin\gamma}{\sin\alpha}\geqslant\frac{1}{2\cos\gamma};$$
$$\sin2\gamma \geqslant \sin\alpha\;;\;\alpha \leqslant 2\gamma \leqslant \pi-\alpha$$
Учитывая, что $2\gamma \leqslant \beta+\gamma=\pi-\alpha$, имеем: $AB \geqslant A_1C \Leftrightarrow \alpha \leqslant 2\gamma .$

Завершаем доказательство:
$$180^\circ = \alpha+\beta+\gamma \leqslant 2\gamma+2\gamma+\gamma=5\gamma \Rightarrow \gamma \geqslant 36^\circ .$$

А.Эвнин