М1654. Задача о медиане и биссектрисе неравнобедренного треугольника

Задача из журнала «Квант» (1998 год, 5 выпуск)

Условие

Через основание $L$ и $M$ биссектрисы $BL$ и медианы $BM$ неравнобедренного треугольника $ABC$ провели прямые параллельно, соответственно, сторонам $BC$ и $BA$ до пересечения с прямыми $BM$ и $BL$ в точка $D$ и $E$. Докажите, что угол $BED$ прямой.

Рис. 1

Первое решение

Обозначим $O=LD \cap ME$, и пусть точка $O$ лежит внутри треугольника $ABC$ (именно такое расположение было предложено рассмотреть на олимпиаде). $ME$ — медиана треугольника $MBC$ (Рис.1), а значит, и треугольника $MDL$, т.е. $OL=OD$. Далее $\angle DLB = \angle LBC,\; \angle MEL = \angle ABL = \angle LBC$. Получили: $\angle MEL = \angle DLB, \; OL= OE$.

Итак, в треугольнике $LED$ медиана $EO$ равна половине стороны $LD$. Следовательно, угол $DEL$ прямой, откуда сразу следует утверждение задачи.

Случай внешнего расположения точки $O$ рассматривается аналогично. А можно и не рассматривать этот случай, а просто сослаться на такое почти очевидное предложение.

Рис. 2

Лемма. Пусть $B$ и $C$ — произвольные точки на выходящих из $A$ лучах (Рис.2), $BD \parallel CK, \; CE \parallel BF$. Тогда и $ED \parallel KF$.

Следует из теоремы Фалеса; легко получить его с помощью векторов.

С помощью векторов нетрудно получить и естественное решение исходной задачи.

Второе решение

Рис. 3

Ниже мы будем рассматривать векторы в базисе $\{\vec{a} , \; \vec{c} \}, \;$ где $\vec{a} = \vec{BC},\; \vec{c} = \vec{BA}, \;$ длины этих векторов обозначим через $a$ и $c$ соответственно.

Имеем: $\displaystyle \vec{BL}=\vec{c} + \frac{c}{a+c} \Big( \vec{a} — \vec{c} \Big) = \frac{1}{a+c}\Big(a \vec{c} + c \vec{a} \Big)$.

Обозначим $\vec{BE} = \alpha \vec{BL}$, тогда $$ \alpha \vec{BL} + \vec{EM} = \vec{BM} =\frac{1}{2} \Big( \vec{a} + \vec{c} \Big).$$ Приравняем проекции левой и правой частей этого равенства на вектор $\displaystyle \vec{a}: \frac{\alpha c}{a+c} = \frac{1}{2}$, откуда $\displaystyle \alpha = \frac{a+c}{2c}$.

Аналогично, положив $\vec{BD} = \beta \vec{BM}$, получим $\beta \vec{BM}+\vec{DL}=\vec{BL}$; проектируя обе части этого равенства на $\vec{c}$, находим $\displaystyle \frac{\beta}{2}=\frac{a}{a+c}$.

Получили $\displaystyle \vec{BE} = \frac{\vec{a}}{2} + \frac{a}{2c} \vec{c},\; \vec{BD} = \frac{a}{a+c} \Big(\vec{a} + \vec{c} \Big)$. Таким образом, $\displaystyle\frac{\vec{BE}}{a} = \frac{1}{2}\left( \frac{\vec{a}}{a} + \frac{\vec{c}}{c}\right)$ — это высота треугольника, построенного на единичных векторах $\displaystyle \frac{\vec{a}}{a}$ и $\displaystyle \frac{\vec{c}}{c}$. Далее, $\displaystyle \frac{\vec{BE}}{a} = \frac{1}{a+c}\left(a \cdot \frac{\vec{a}}{a}+c \cdot \frac{\vec{c}}{c}\right)$ — (внутренняя) точка основания этого треугольника, отличная от основания высоты. Поэтому очевидно(Рис.3), что $\displaystyle \frac{\vec{BD}}{a}-\frac{\vec{BE}}{a}\bot\vec{BE}$ — и утверждение задачи доказано.

Разумеется, к этому решению можно было подойти более формально: вектор $\displaystyle \vec{BD}-\vec{BE}=\frac{a \left( a-c \right)}{2 \left( a+c \right)} \left(\frac{\vec{a}}{a}-\frac{\vec{c}}{c}\right) $ параллелен основанию треугольника. А можно было и воспользоваться понятием скалярного произведения векторов: $$\displaystyle \left( \vec{BD}, \vec{BE} \right) = \frac{a^2}{2} \left( 1+\frac{\Big( \vec{a}, \vec{c} \Big)}{ac} \right), $$ $$\displaystyle \left( \vec{BE}, \vec{BE} \right) = \frac{a^2}{2} \left( 1+\frac{\Big( \vec{a}, \vec{c} \Big)}{ac} \right).$$

А. Акопян, В. Сендеров

М1651. О наименьшей и наибольшей площади выпуклой фигуры

Задача из журнала «Квант» (1998 год, 5 выпуск)

Условие

Найдите а) наименьшую, б) наибольшую возможную площадь выпуклой фигуры, все проекции которой на оси $Oх$, $Oу$ и прямую $х = у$ суть отрезки единичной длины.

Ответ: а) $\sqrt{2}-1$; б)$\frac{2\sqrt{2}-1}{2}$.

Решение

Для обоих случаев а) и б) фигура $F$, о которой идет речь в задаче, заключается внутри шестиугольника, являющегося пересечением трех полос (шириной $1$ каждая) (рис.$1$).

Рис. 1
Рис. 1

Назовем такой шестиугольник накрывающим. В случае б) фигура $F$ совпадает с накрывающим шестиугольником, достигая наибольшей площади тогда, когда накрывающий шестиугольник симметричен относительно обеих диагоналей квадрата. Эта наибольшая площадь равна $\frac{2\sqrt{2}-1}{2}$, как показывают элементарные вычисления.

Рис. 2
Рис. 2

Минимальная площадь фигуры $F$ (случай а) реализуется на многоугольнике, который на каждой стороне накрывающего шестиугольника имеет по крайней мере одну вершину. Таким многоугольником будет четырехугольник $ABCD$ (рис.$2$), который во всех разновидностях накрывающих шестиугольников имеет одну и ту же площадь $\sqrt{2}-1$.

В.Тиморин

M1817. Окружности вписанные в четырёхугольник

Задача из журнала «Квант» (2002 год, 6 выпуск)

Условие

Четырехугольник с перпендикулярными диагоналями вписан в квадрат. Диагонали и стороны четырехугольника разделили квадрат на 8 треугольников, попеременно окрашенных в красный и синий цвет (рис.1).

рис 1

Докажите, что сумма радиусов окружностей, вписанных в красные треугольники равна сумме радиусов окружностей, вписанных в синие треугольники.

Решение

Сначала два вспомогательных факта.

  1. Диаметр вписанной в прямоугольный треугольник окружности равен разности между суммой его катетов и гипотенузой, т.е. $2r = a + b — c.$ Обоснование этого полезного утверждения можно усмотреть из рисунка

  1. Два взаимно перпендикулярных отрезка разделили квадрат на четыре четырехугольнька. Тогда сумма периметров любых двух несоседних из них равна сумме периметров двух других (рис.3).
рис 3

Обоснуем это. Один из разделяющих отрезков перенесем параллельно себе так, чтобы он прошел через центр квадрата; при этом сумма периметров несоседних четырехугольников останется прежней. То же самое сделаем со вторым отрезком. Но два отрезка, взаимно перпендикулярные и проходящие через центр квадрата, делят его на четыре равных четырехугольника. Теперь рассуждение легко закончить самостаятельно.

Вернемся к условию задачи. На основании утверждения 2 можно заключить, что сумма длин всех катетов красных треугольников равна сумме длин всех катетов синих треугольников. К этому можно добавить, что сумма длин всех гипотенуз красных треугольников равна сумме длин всех гипотенуз синих треугольников. Откуда используя утверждение 1, делаем вывод, что сумма радиусов окружностей, вписанных в красные треугольники, равна сумме радиусов окружностей, вписанных в синие треугольники.

В. Произволов

М1803. О суммарной площади треугольников

Задача из журнала «Квант» (2002 год, 1 выпуск)

Условие

В квадрате $ABCD$ взяты точки $P$ и $Q$ такие, что $\angle{PAQ}=\angle{QCP} = 45^{\circ}$ (рис.$1$). Докажите, что суммарная площадь треугольников $PAQ, PCB$ и $QCD$ равна суммарной площади треугольников $QCP, QAD$ и $PAB.$

Рис.1

Доказательство

Симметрично отразим $\triangle{APB}$ относительно прямой $AP,$ а $\triangle{AQD}$ — относительно прямой $AQ.$ При этом отраженные точки $B$ и $D$ «склеятся» в одну точку $M$ (рис.$2$).

Рис.2
Значит, суммарная площадь треугольников $QCP, QAD$ и $PAB$ равна площади четырехугольника $APCQ$ плюс площадь треугольника $PQM.$ Симметрично отразим $\triangle{CPB}$ относительно прямой $CP,$ а $\triangle{CQD}$ — относительно прямой $CQ.$ При этом отраженные точки $B$ и $D$ «склеятся» в одну точку $N.$ Значит, суммарная площадь треугольников $PAQ, PCB$ и $QCD$ равны площади четырехугольника $APCQ$ плюс площадь треугольника $PQN.$
Остается заметить, что площади треугольников $PQM$ и $PQN$ равны, поскольку сами треугольники равны.

В.Произволов

М1345. Задача об окружности пересекающей гиперболу и правильном треугольнике

Задача из журнала «Квант» (1992 год, 5 выпуск)

Условие

На гиперболе $y =\displaystyle \frac{1}{x}$ взяты две точки $M(x_0;y_0)$ и $N(-x_0;-y_0)$, симметричные относительно начала координат. Окружность с центром $M$, проходящая через точку $N$, пересекает гиперболу ещё в трех точках. Докажите, что эти точки лежат в вершинах правильного треугольника.

Решение

Для решения данной задачи вам потребуется следующая

Лемма. Пусть точки $A, B, C$ лежат на окружности с центром $M$. Тогда треугольник $ABC$ является правильным тогда и только тогда, когда $\overrightarrow{\mkern -3mu OA\mkern 3mu}+\overrightarrow{\mkern -3mu OB\mkern 3mu}+\overrightarrow{\mkern -3mu OC\mkern 3mu}=3 \mkern 3mu \overrightarrow{\mkern -3mu OM\mkern 3mu}.$

Из данного равенства сразу следует, что $\overrightarrow{\mkern -3mu MA\mkern 3mu}+\overrightarrow{\mkern -3mu MB\mkern 3mu}+\overrightarrow{\mkern -3mu MC\mkern 3mu}=\overrightarrow{0}$, но это означает, что точка $M$ совпадает с центром тяжести треугольника $ABC$, т.е. с точкой пересечения его медиан (убедитесь в этом). Таким образом, длины всех всех медиан треугольника $ABC$ равны. Отсюда следует что треугольник правильный. (Обратное утверждение очевидно.)

Теперь приступим к решению задачи. Пусть координаты точек $A, B, C$ и $M$ равны соответственно $(x_A;y_A), (x_B;y_B), (x_C;y_C)$ и $(x_M;y_M)$. По условию,$$  \begin{cases}xy=1,\\(x-x_0)^{2}+(y-y_0)^{2}=4({x_0}^2+{y_0}^2).\end{cases}  $$Подставив $y=\displaystyle \frac{1}{x}$ из первого уравнения системы во второе, после несложных преобразований получаем уравнение для $x$:$$x^{4}-2{x_0}^3+\dots=0$$

Мы выписали только два старших члена, поскольку остальные слагаемые нас не интересуют. По теореме Виета сумма всех корней этого уравнения, включая корень $(-x_0)$, равна $2x_0$. Поэтому $x_{A}+x_{B}+x_{C}=3x_0$. Аналогично $y_{A}+y_{B}+y_{C}=3y_0$.

Последние равенства означают, что $$\overrightarrow{\mkern -3mu OA\mkern 3mu}+\overrightarrow{\mkern -3mu OB\mkern 3mu}+\overrightarrow{\mkern -3mu OC\mkern 3mu}=3 \mkern 3mu \overrightarrow{\mkern -3mu OM\mkern 3mu},$$ где $O$ начало координат. Осталось воспользоваться доказанной нами леммой.

В.Сендеров