Определение и свойства кратного интеграла Римана

Необходимые понятия

Разбиения

Пусть множество $G$ измеримо по Жордану в $\mathbb{R}^{n}$. Совокупность измеримых по Жордану в $\mathbb{R}^{n}$ и попарно непересекающихся множеств $G_{1}, …, G_{N}$ называется разбиением $G$, если $G=\bigcup_{i=1}^{N}G_{i}.$ Разбиение будем обозначать буквой $T$.

Пусть $d\left ( G_{i} \right )$ есть диаметр множества $G_{i}$, т. е. $$d\left ( G_{i} \right )=\underset{x\in G_{i}, y\in G_{i}}{\sup}\rho \left ( x,y \right ).$$

Число $l\left ( T \right )=\underset{i=\overline{1,N}}{\max d\left(G_{i} \right )}$ будем называть мелкостью разбиения $T$.

Разбиение $T=\left \{ G_{i} \right \},$ $i=\overline{1,N}$, будем называть продолжением разбиения $ {T}’=\left \{ {G}’_{i} \right \},$ $i=\overline{1,N}$, и писать $T\prec{T}’$, если каждое из множеств $G_{i}$ является подмножеством некоторого множества ${G}’_{k}$. Очевидно, что из $T\prec{T}’$ следует, что $l\left ( T \right )\leq l\left ( {T}’ \right )$.

Интегральные суммы Римана. Суммы Дарбу

Пусть функция $f\left ( x \right )$ определена на измеримом по Жордану множестве $G$, а $T$ есть разбиение множества $G:~ T=\left \{ G_{i} \right \}, i=\overline{1,N}.$ Возьмем в каждом из множеств $G_{i}$ по точке $\xi _{i}$. Выражение $$\sigma _{T}\left ( f, \xi, G\right )=\sum_{i=1}^{N}f\left ( \xi _{i} \right )m\left ( G_{i} \right)$$ называется интегральной суммой Римана функции $f\left ( x \right )$ на множестве $G$, соответствующей разбиению $T$ и выборке $\xi =\left ( \xi _{1}, …, \xi _{N} \right )$. Иногда для краткости сумма Римана обозначается просто через $\sigma _{T}$.

Если функция $f\left ( x \right )$ ограничена на множестве $G$, то для любого разбиения $T=\left \{ G_{i} \right \}, i=\overline{1,N}$, определены числа $$m_{i}=\underset{x\in G_{i}}{\inf}f\left ( x \right ), ~~M_{i}=\underset{x\in G_{i}}{\sup }f\left ( x \right ).$$

Выражения $$S_{T}=\sum_{i=1}^{N}M_{i}m\left ( G_{i} \right ),~~s_{T}=\sum_{i=1}^{N}m_{i}m\left ( G_{i} \right )$$ называются верхней и нижней суммами Дарбу, соответствующими разбиению $T$.

Определение

Число $I$ называется пределом интегральной суммы $\sigma _{T}$ при мелкости разбиения $l\left ( T \right )\rightarrow 0$, если для любого $\varepsilon > 0$ найдется $\delta > 0$ такое, что для любого разбиения $T$ с мелкостью $l\left ( T \right )< \delta $ и для любой выборки выполняется неравенство $$\left | I-\sigma _{T}\left ( f, \xi , G \right ) \right |< \varepsilon.$$

Если число $I$ есть предел интегральной суммы при $l\left ( T \right )\rightarrow 0$, то будем писать $I=\underset{l\left ( T \right )\rightarrow 0}{\lim }\sigma _{T}$, само число $I$ будем называть кратным интегралом Римана от функции $f\left ( x \right )$ по множеству $G$, а функцию $f\left ( x \right )$ — интегрируемой на множестве $G$. Для кратного интеграла Римана используются следующие обозначения: $$\underset{G}{\int}f\left(x\right)dx,~~\underset{n}{\underbrace{\underset{G}{\int…\int }}}f\left ( x_{1}, …, x_{n} \right )dx_{1}…dx_{n}.$$

В случае $n=2$ интеграл называется двойным, а в случае $n=3$ — тройным. Обозначения для двойного и тройного интеграла: $$\underset{G}{\iint}f\left ( x,y \right )dxdy,~~\underset{G}{\iiint} f\left ( x,y,z \right)dxdydz.$$

Свойства кратного интеграла

Свойство 1.
Справедливо равенство $\underset{G}{\int}1\cdot dx=m\left ( G \right )$.

Доказательство показать
Свойство 2.
Если $f\left ( x \right )> 0$ и $f\left ( x \right )$ — интегрируемая на измеримом по Жордану множестве $G$ функция, то $\underset{G}{\int }f\left ( x \right )dx\geq 0$.

Доказательство показать
Свойство 3.
Если $f_{1}\left ( x \right )$ и $f_{2}\left ( x \right )$ — интегрируемые на множестве $G$ функции, а $\alpha$ и $\beta$ — произвольные вещественные числа, то и функция $\alpha f_{1}\left ( x \right )+\beta f_{2}\left ( x \right )$ интегрируема на $G$, причем $$\underset{G}{\int }\left ( \alpha f_{1}\left ( x \right ) + \beta f_{2}\left ( x \right ) \right )dx=$$ $$=\alpha \underset{G}{\int }f_{1}\left ( x \right )dx+\beta \underset{G}{\int }f_{2}\left ( x \right )dx.$$

Доказательство показать
Свойство 4.
Если $f_{1}\left ( x \right )$ и $f_{2}\left ( x \right )$ — интегрируемые на множестве $G$ функции и $f_{1}\left ( x \right )\leq f_{2}\left ( x \right )$ при $x\in G$, то $$\underset{G}{\int }f_{1}\left ( x \right )dx\leq \underset{G}{\int }f_{2}\left ( x \right )dx.$$

Доказательство показать
Свойство 5.
Если функция $f\left ( x \right )$ непрерывна на измеримом связном компакте $G$, то найдется точка $\xi \in G$ такая, что $$\underset{G}{\int }f\left ( x\right )dx=f\left ( \xi \right )m\left ( G \right ).$$

Доказательство показать
Свойство 6.
Если $\left \{ G_{k} \right \}, k=\overline{1,m}$, есть разбиение множества $G,$ то функция $f\left ( x \right )$ интегрируема на множестве $G$ в том и только том случае, когда она интегрируема на каждом из множеств $G_{k},$ причем $$\underset{G}{\int}f\left ( x \right )dx= \sum_{k=1}^{m}\underset{G_{k}}{\int}f\left ( x \right )dx.$$
Свойство 7.
Произведение интегрируемых на измеримом множестве $G$ функций есть интегрируемая на множестве $G$ функция.

Доказательство показать
Свойство 8.
Если функция $f\left ( x \right )$ интегрируема на измеримом множестве $G$, то функция $\left | f\left ( x \right ) \right |$ также интегрируема и $$\left | \underset{G}{\int}f\left ( x \right )dx \right |\leq \underset{G}{\int }\left | f\left ( x \right ) \right |dx.$$

Доказательство показать

Примеры

Пример 1

Определить какой знак имеет интеграл $\underset{x^2+y^2\leq 4}{\iint}\sqrt[3]{1-x^2-y^2}dxdy.$

Исследование показать

Пример 2 (вычисление площади плоской фигуры с помощью двойного интеграла)

Вычислить площадь фигуры, занимающей область $D$, ограниченную линиями $x=y^2$ и $x+y=2$.

Решение показать

Пример 3 (вычисление объема с помощью двойного интеграла)

Пусть цилиндрический брус ограничен сверху непрерывной поверхностью $z=f\left (x,y \right)$, снизу — плоскостью $z=0$, с боков — цилиндрической поверхностью с образующими, параллельными оси $Oz$. Если указанная цилиндрическая поверхность вырезает из плоскости $Oxy$ квадрируемую замкнутую область $D$, то объем $V$ бруса вычисляется по формуле: $$V=\underset{D}{\iint}f\left ( x,y \right )dxdy.~~(**)$$

Найти объем тела, ограниченного поверхностями: $$z=x^2+y^2,~y=x^2,~y=1,~z=0.$$

Решение показать

Кратный интеграл Римана

Тест: Кратный интеграл Римана.

Сведение кратных интегралов к повторным

Сведение двойного интеграла к повторному

Теорема 1

Пусть:

  1. функция $f(x,y)$ интегрируема в некотором прямоугольнике $\Pi = \{ (x,y): a \leq x \leq b, c \leq y \leq d \};$
  2. для любых $x \in [a,b]$ существует интеграл $\int\limits_c^d f(x,y)\,dy.$

Тогда $\int\limits_c^d f(x,y)\,dy$ — интегрируемая на отрезке $[a,b]$ функция от аргумента $x,$ и справедлива следующая формула:
$$\iint\limits_{\Pi} f(x,y)\,dx\,dy = \int\limits_a^b dx \int\limits_c^d f(x,y)\,dy.$$

Доказательство

... показать

Следствие 1

Пусть:

  1. существует двойной интеграл $\iint\limits_{\Pi} f(x,y)\,dx\,dy;$
  2. для любых $x \in [a,b]$ существует интеграл $\int\limits_c^d f(x,y) \, dy;$
  3. для любых $y \in [c,d]$ существует интеграл $\int\limits_a^b f(x,y) \, dx.$

Тогда справедлива формула

$\iint\limits_{\Pi} f(x,y)\,dx\,dy = \int\limits_a^b dx \int\limits_c^d f(x,y)\,dy =$ $\int\limits_c^d dy \int\limits_a^b f(x,y)\,dx. \; (3)$

Следствие 2

Непрерывность функции $f(x,y)$ в прямоугольнике $\Pi$ влечет выполнимость условий следствия 1, а значит, справедлива формула $(3).$

Если функция $\psi (x)$ интегрируема на отрезке $[a,b],$ то формула $(3)$ остается справедливой при замене функции $f(x,y)$ на $\psi (x) f(x,y).$

Определение 1

Пусть:

  1. $\phi (x)$ и $\psi (x)$ — функции, непрерывные на отрезке $[a,b];$
  2. для любых $x \in (a,b)$ выполняется неравенство $\phi (x) < \psi (x).$

Тогда область (рисунок 1)
$$\Omega = \{(x,y): \phi (x) < y < \psi (x), a < x < b\}$$
будем называть элементарной относительно оси $y.$
Fig_1
Поскольку граница области $\delta \Omega$ состоит из графиков непрерывных функций, то $\Omega$— измеримая по Жордану область.

Теорема 2

Пусть:

  1. $\Omega$ — элементарная область относительно оси $y;$
  2. функция $f(x,y)$ интегрируема на области $\overline{\Omega} = \Omega \cup \delta \Omega;$
  3. для любых $x \in [a,b]$ существует интеграл $\int\limits_{\phi(x)}^{\psi(x)} f(x,y)\,dy.$

Тогда справедлива следующая формула:
$$\iint\limits_{\Omega} f(x,y)\,dx\,dy = \int\limits_a^b dx \int\limits_{\phi(x)}^{\psi(x)} f(x,y)\,dy. \;(4)$$

Доказательство

... показать

Пример 1

Вычислить двойной интеграл $\iint\limits_G x^2 \, dx\,dy$ по области $G = \{(x,y): -1 < x < 1, x^2 < y < 2 \}$ (рисунок 3).
Fig_3

Решение

... показать

Пример 2

Свести к повторному интеграл $\iint\limits_G f(x,y) \, dx \, dy,$ где $G$ — область, ограниченная окружностями $x^2 + y^2 = 4$ и $x^2 -2x + y^2 = 0$ (рисунок 4).
Fig_4

Решение

... показать

Сведение тройного интеграла к повторному

Определение 2

Область $\Omega \in \mathbb{R}^3$ будем называть элементарной относительно оси $z,$ если
$$\Omega = \{(x,y,z): (x,y) \in G \subset \mathbb{R}^2, \phi(x,y) < z < \psi(x,y) \},$$
где $G$ — ограниченная в $\mathbb{R}^2$ область, а функции $\phi(x,y)$ и $\psi(x,y)$ непрерывны на $\overline{G},$ где $\overline{G}$ — замыкание области $G.$

Теорема 3

Если функция $f(x,y,z)$ непрерывна на $\overline{\Omega} = \Omega \cup \delta \Omega,$ где область $\Omega$ элементарна относительно оси $z,$ то справедлива следующая формула:
$$\iiint\limits_\Omega f(x,y,z) \, dx \, dy \, dz = \iint\limits_G dx \,dy \int\limits_{\phi(x,y)}^{\psi(x,y)} f(x,y,z) \, dz. \; (6)$$

Доказательство

... показать

Пример 3

Вычислить тройной интеграл $\iiint\limits_G z \, dx \, dy \, dz,$ где $G$ — область, ограниченная плоскостями $x + y + z = 1,$ $x = 0,$ $y = 0$ и $z = 0$ (рисунок 5).
Fig_5

Решение

... показать

Тест

Проверьте свои знания по теме, пройдя этот небольшой тест.