Теорема Ролля о корне производной

Формулировка

Если [latex]f(x)\in C[a,b][/latex] (т.е. она непрерывна на этом промежутке), дифференцируема на (a,b) и [latex]f(a)=f(b)[/latex] тогда [latex]\exists \xi \in (a,b): f'(\xi )=0.[/latex] Теорему Ролля можно сформулировать кратко так: между двумя точками, в которых дифференцируемая функция принимает равные значения, найдется хотя бы один ноль производной этой функции. Для случая [latex]f(a)=f(b)=0[/latex] теорема формируется еще короче: между двумя нулями дифференцируемой функции лежит хотя бы один ноль ее производной.

Доказательство

Обозначим [latex]M=sup f(x), m=inf f(x)[/latex] для [latex]a\leq x\leq b.[/latex] По теореме Вейерштрасса на отрезке [latex][a,b][/latex] существуют такие точки [latex]c_{1} [/latex] и [latex]c_{2},[/latex] что [latex]f(c_{1})=m, f(c_{2})=M.[/latex] Если [latex]M=m,[/latex] то [latex]f(x)=const,[/latex] и в качестве [latex]\xi [/latex] можно взять любую точку интервала [latex](a,b).[/latex]
Если [latex]m\neq M,[/latex] то [latex]m<M,[/latex] и поэтому [latex]c_{1} 0[/latex] такое, что [latex]U_{\delta}(c_{1})\subset (a,b).[/latex] Так как для всех [latex]x\in U_{\delta }(c_{1})[/latex] выполняется условие [latex]f(x)\geq f(c_{1})=m,[/latex] то по теореме Ферма [latex]f'(c_{1})=0,[/latex] т.е. условие [latex]f'(\xi )=0[/latex] выполняется при [latex]\xi=c_{1}.[/latex] Аналогично рассматривается случай когда [latex]c_{2}\in (a,b).[/latex]

Геометрический смысл теоремы Ролля

При условиях теоремы [latex]\exists \xi \in (a,b):[/latex] касательная к [latex]y=f(x)[/latex] в точке [latex](\xi, f(\xi ))[/latex] параллельна оси ox

Rolla

Замечание! Все условия теоремы существенны.

Пример

Удовлетворяет ли функция[latex] y=2-|x|,[/latex] определенная на всей вещественной оси, условиям теоремы?

Спойлер

Эта функция удовлетворяет всем условиям, кроме одного. Для этой функции не существует точки на интервале (-2,2), в которой производная была бы равна нулю.

gb

[свернуть]

Теорема Ролля о корне производной

Этот тест был составлен для того, чтобы проверить знание теоремы Ролля о корне производной

Литература

  • Конспект лекций Лысенко З.М.
  • Тер-Крикоров А.М., Шабунин М.И., Курс математического анализа, физмат-лит, 1988. стр.165-166
  • Демидович Б.П., Сборник задач и упражнений по математическому анализу, М., Наука, 1981. стр.134-140

Теорема Коши (обобщенная формула конечных приращений)

Формулировка

Если функции [latex]f\left( x \right)[/latex] и [latex]g\left(x\right)[/latex] непрерывны на отрезке [latex][a,b][/latex], дифференцируемы на интервале (a,b), причем [latex]g'(x)\neq 0[/latex] во всех точках этого интервала, то найдется хотя бы одна точка [latex]\xi \in (a,b)[/latex] такая, что [latex]\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(\xi)}{g'(\xi)}[/latex].

Доказательство

Рассмотрим функцию [latex]\varphi(x)=f(x)+\lambda g(x)[/latex], где число [latex]\lambda[/latex] выберем таким, чтобы выполнялось равенство [latex]\varphi (a)=\varphi (b)[/latex], которое равносильно следующему:
[latex]f(b)-f(a)+\lambda (g(b)-g(a))=0[/latex].

Заметим, что [latex]g(b)\neq g(a)[/latex], так как в противном случае согласно Теореме Ролля существовала бы точка [latex]c\in (a,b)[/latex] такая, что $latex g'(c)=0$ вопреки условиям данной теоремы. Из равенства [latex]f(b)-f(a)+\lambda (g(b)-g(a))=0[/latex] следует, что [latex]\lambda =-\frac{f(b)-f(a)}{g(b)-g(a)}[/latex].

Так как функция [latex]\varphi [/latex] при любом [latex]\lambda[/latex] непрерывна на отрезке $latex [a,b]$ и дифференцируема на интервале [latex](a,b)[/latex], а при значении [latex]\lambda[/latex], определяемом предыдущей формулой, принимает равные значения в точках $latex a$ и $latex b$, то по теореме Ролля существует точка [latex]\xi \in (a,b)[/latex] такая, что [latex]\varphi ‘(\xi )=0[/latex], т.е. [latex]f'(\xi )+\lambda g'(\xi )=0[/latex], откуда [latex]\frac{f'(\xi )}{g'(\xi )}=-\lambda[/latex]. Из этого равенства и формулы [latex]\lambda =-\frac{f(b)-f(a)}{g(b)-g(a)}[/latex] следует [latex]\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(\xi)}{g'(\xi)}[/latex].

  1. Замечание. Теорема Лагранжа — частный случай теоремы Коши [latex](g(x)=x)[/latex].
  2. Замечание. Теорему Коши нельзя получить используя теорему Лагранжа отдельно к числителю и к знаменателю.

Теорема Коши (обобщенная формула конечных приращений)

Правильно ли вы поняли обобщенную теорему Лагранжа?

Литература

  • Конспект лекций Лысенко З.М.
  • Тер-Крикоров А.М., Шабунин М.И., Курс математического анализа, физмат-лит, 2001. стр.157-158