12.3 Частные производные

Сначала рассмотрим пример. Пусть $ \DeclareMathOperator{\tg}{tg} f(x,y)=x^{2}+y^{2}$. Производной по $x$ называется $$\frac{\partial f}{\partial x}(x,y)=2x,$$
а производной по $y$ – $$\frac{\partial f}{\partial y}(x,y)=2y.$$
Полной производной, или дифференциалом, согласно примеру $1$, будет $A(h,k)=2xh+2yk$, $A = \mathrm{d}f(x,y).$

Определение. Пусть $f\colon E\to \mathbb{R}$, где открытое множество $E\subset{\mathbb{R}^{n}}$, и точка $x_{0}\in{E}$. Если существует $$\lim_{t \rightarrow 0}\frac{f(x_{0}+te_{i})-f(x_{0})}{t},$$ то этот предел называется $i$-й частной производной функции $f$ по переменной $x^{i}$ в точке $x_{0}$ и обозначается одним из символов $\frac{\partial f}{\partial x^{i}}(x_{0}),$ ${f}’_{x^{i}}(x_{0}),$ $\mathrm{D}_{i}f(x_0),$ ${f}’_{i}(x_{0}).$

В этом определении $e_{i}$ – $i$-й координатный вектор. Все его координаты – нули, за исключением $i$-й, равной $1$, а $t \neq 0$ пробегает действительные значения, близкие к нулю, так, чтобы точка $x_{0} + te_{i}$ оставалась во множестве $E.$

Можно записать $$\frac{\partial f }{\partial x^{i}}(x_0)=\lim_{t \rightarrow 0}\frac{f(x_{0}^{1},\ldots, x_{0}^{i}+t,\ldots, x_{0}^{n})-f(x_{0}^{1},\ldots, x_{0}^{n})}{t}.$$
Эта запись показывает, что частную производную можно рассматривать как производную функции $f$ по переменной $x_{i}$ при фиксированных значениях всех остальных переменных. Точнее, $\frac{\partial f}{\partial x^{i}}(x_{0})$ есть производная функции одного переменного $g(\xi)=f(x_{0}^{1},\ldots, x_{0}^{i-1}, \xi, x_{0}^{i+1},\ldots, x_{0}^{n})$ в точке $\xi = x_{0}^{i}.$

Частная производная – это число, в отличие от производной $f'(x_{0}),$ которая называется также полной производной. Полная производная является линейной формой.

Теорема 4. Пусть $f$ – действительная функция, заданная на открытом множестве $E\subset{\mathbb{R}^{n}}$. Если функция $f$ дифференцируема в точке $x_{0}\in{E}$, то в этой точке у нее существуют частные производные по всем переменным. При этом справедливо равенство $$f(x_{0}+h)-f(x_{0})=\frac{\partial f}{\partial x^{1}}(x_{0})h^{1}+\ldots+\frac{\partial f}{\partial x^{n}}(x_{0})h^{n}+\bar{o}(\left | h \right |). \quad (12.11)$$

Пусть $A={\mathrm{d} f}(x_{0})$. Тогда, по определению дифференцируемости, $$f(x_{0}+h)-f(x_{0})= A(h)+\bar{o}(\left | h \right |). \quad (12.12)$$
Положим $h = te_{i}$, где достаточно малое $t\neq 0.$ Тогда получим $$f(x_{0}+te_{i})−f(x_{0})=tA(e_{i})+\bar{o}(\left | t \right |).$$
Отсюда следует, что $$\frac{f(x_{0}+te_{i})-f(x_{0})}{t}\to A(e_{i})\quad(t\to 0).$$
Тем самым мы доказали, что существует $\frac{\partial f}{\partial x^{i}}(x_{0})=A(e_{i})$. Заметим, что $$A(h) = A(e_{1})h^{1}+\ldots+A(e_{n})h^{n},$$ и поэтому из $(12.12)$ следует $(12.11).$

При доказательстве теоремы нами установлено соотношение $$\frac{\partial f}{\partial x^{i}}(x_{0})=\mathrm{d}f(x_{0})e_{i}\quad(i=1,\ldots,n).$$
В правой его части записано значение линейной формы $\mathrm{d}f(x_{0})$ на $i$-м базисном векторе $e_{i}$.

Формулой $$\mathrm{d}f(x_{0})h=\frac{\partial f}{\partial x^{1}}(x_{0})h^{1}+\ldots+\frac{\partial f}{\partial x^{n}}(x_{0})h^{n}\quad(h\in \mathbb{R}^{n})$$ описывается дифференциал $\mathrm{d}f(x_{0})$ как линейная форма. Заметим, что из этой формулы вытекает равенство $$\mathrm{d}f(x_{0})=\frac{\partial f}{\partial x^{1}}(x_{0})\pi^{1}+\ldots+\frac{\partial f}{\partial x^{n}}(x_{0})\pi^{n},$$ где $\pi^{i}(h)$ – $i$-я проекция.

Таким образом, частные производные – это координаты полной производной или дифференциала в стандартном базисе $\pi^{1}, \ldots, \pi^{n}$ сопряженного пространства.

Пример 1. Пусть $f(x, y)=x^{2}+y^{2}.$ Как было установлено выше, частные производные этой функции по переменным $x$ и $y$ соответственно равны $2x$ и $2y.$ Вычислим значение дифференциала этой функции в точке $(1, 2)$ на векторе $(−3, 5).$ Имеем
$$\frac{\partial f}{\partial x}(1, 2)=2,\quad \frac{\partial f}{\partial y}(1, 2)=4,\quad \mathrm{d}f(1, 2)(−3, 5) = 2(−3)+4·5=14.$$
Запишем разложение $\mathrm{d}f(1, 2)$ по базисным линейным формам $\pi^{1},$ $\pi^{2}:$
$$\mathrm{d}f(1, 2) = 2\pi^{1} + 4\pi^{2}.$$
Это выражение полностью описывает дифференциал.

Пример 2. Рассмотрим функцию $f(x) = \left | x \right |$, $x\in \mathbb{R}^{n}$. Покажем, что в начале координат у нее нет ни одной частной производной. Действительно, например, $f(x^{1}, 0, \ldots, 0) = \left | x^{1} \right |$, но, как хорошо известно, у этой функции нет производной в нуле по переменной $x^{1}.$ Аналогично показываем, что в начале координат нет частных производных по остальным переменным.

Рассмотрим геометрический смысл частной производной на примере функции $f(x, y)$ двух переменных. Сечением графика функции $f(x, y)$ плоскостью $y = y_{0}$ есть некоторая кривая – график функции одного переменного $f(x, y_{0})$. Касательная к этому графику в точке $x = x_{0}$ образует некоторый угол $\alpha$ с положительным направлением оси $Ox$. Тангенс этого угла $\tg \alpha$ и есть частная производная функции $f(x, y)$ по переменной $x$ в точке $(x_{0}, y_{0})$, т. е. $\tg \alpha = \frac{\partial f}{\partial x}(x_{0}, y_{0})$.

Частные производные в точке $(x_{0}, y_{0})$ характеризуют поведение функции вблизи точки $(x_{0}, y_{0})$ вдоль прямых, параллельных координатным осям. В случае $n \geq 2$ из существования частных производных не следует дифференцируемость функции. Например, пусть функция $f(x, y) = 1$, если $xy = 0$, и $f(x, y) = 0$ во всех остальных точках $(x, y)$. Тогда очевидно, что $\frac{\partial f}{\partial x}(0, 0)=\frac{\partial f}{\partial y}(0, 0)=0$, но, в то же время, функция $f$ разрывна в точке $(0, 0)$ и, тем более, она не является дифференцируемой в этой точке.

Пример 1. Пусть
$$f(x, y)=\left\{\begin{matrix}\frac{xy}{x^{2}+y^{2}}, \quad x^{2}+y^{2}>0, &\\0, \quad x^{2}+y^{2}=0.\end{matrix}\right.$$
Если $x^2 + y^2 > 0$, то
$$\frac{\partial f}{\partial x}(x, y)=y\frac{x^2+y^2-2x^2}{(x^2+y^2)^2}=y\frac{y^2-x^2}{(x^2+y^2)^2},\quad \frac{\partial f}{\partial y}(x, y)=x\frac{x^2-y^2}{(x^2+y^2)^2}.$$
Вычислим частные производные функции $f$ в начале координат. Поскольку $f(x, 0) = 0$, то $\frac{\partial f}{\partial x}(0, 0) = 0$. Аналогично $\frac{\partial f}{\partial y}(0, 0) = 0$. Таким образом, частные производные функции $f$ существуют во всех точках плоскости. Однако эта функция разрывна в начале координат, поскольку на прямой $x = y \neq 0$ справедливо равенство $f(x, x) = \frac{1}{2}$. Это означает, что ее предел не равен значению функции в точке $(0, 0)$.
Итак, функция $f$ разрывна в начале координат, так что она не является дифференцируемой в точке $(0, 0)$.

Пример 2. Функция
$$f(x, y)=\left\{\begin{matrix}\frac{xy}{\sqrt{x^{2}+y^{2}}}, \quad x^{2}+y^{2}>0, &\\0, \quad x^{2}+y^{2}=0.\end{matrix}\right.$$
как было показано ранее, непрерывна во всех точках плоскости. Легко видеть, что в каждой точке плоскости она имеет частные производные, однако, как было показано выше, в начале координат не является дифференцируемой.

Определение. Пусть действительная функция $f$ определена на открытом множестве $E\subset\mathbb{R}^{n}$. Предположим, что в каждой точке $x \in E$ существует частная производная $\frac{\partial f}{\partial x^{i}}(x)$. Тогда получаем функцию $x \to\frac{\partial f}{\partial x^{i}}(x)$, определенную на множестве $E$, которая обозначается $\frac{\partial f}{\partial x^{i}}$ и называется $i$-й частной производной.

Определение. Если функция $f$ в каждой точке $x$ множества $E$ имеет все частные производные $\frac{\partial f}{\partial x^{i}}$ и они непрерывны на множестве $E$ то функция $f$ называется непрерывно дифференцируемой на этом множестве. Через $C^1(E)$ обозначается класс всех непрерывно дифференцируемых на множестве $E$ функций.

Определение. Если функция $f$ дифференцируема в каждой точке множества $E$, то говорят, что $f$ дифференцируема на множестве $E$.

Теорема. Пусть функция $f$ принадлежит классу $C^{1}(E)$, где открытое множество $E\subset\mathbb{R}^{n}$. Тогда $f$ дифференцируема на $E$.

Фиксируем $x_{0} \in E$. Поскольку множество $E$ открыто, то существует шар $U_0$ с центром в этой точке, целиком содержащийся в $E$. Пусть $r$ – радиус этого шара и вектор $h$ имеет длину $\left | h \right | < r$. Обозначим $x_{j} = x_{0} + h^{1}e_{1} + \ldots+ h^{j}e_{j}\quad (j = 1, \ldots, n)$. Ясно, что $x_{n} = x_{0} + h$. Заметим, что все $x_{j}$ принадлежат шару $U_0$. Действительно,
$$\left | x_0-x_j \right |=\sqrt{\sum_{i=1}^{j}(h^{i})^{2}}\leq \left | h \right |<r.$$
Поскольку шар – выпуклое множество, то каждый из отрезков $[x_{j−1}, x_{j}]$ содержится в ${U_0}.$ Действительно, этот отрезок – это множество точек $x = (1 − t)x_{j−1} + tx_{j}$, где $0 \leq t \leq 1$, и мы получаем $$\left | x_0-x_j \right |=(1-t)\left | x_0-x_{j-1} \right |+t\left | x_0-x_{j} \right |<r.$$
Воспользуемся равенством
$$f(x_0 + h) − f(x_0) =\sum_{j=1}^{n}[f(x_j) − f(x_{j−1})].\quad(12.13)$$
Рассмотрим отдельно каждое из слагаемых в правой части. При фиксированном $j$ положим
$g(t) = f(x_{j−1} + te_{j})\quad (0 \leq t \leq h^j).$
По определению частной производной имеем
$$g'(t)=\frac{\partial f}{\partial x^{j}}(x_{j-1}+te_j).$$
По формуле Лагранжа получаем
$$f(x_j)-f(x_{j-1})=g(h^j)-g(0)=g'(\tau_j)h^j=\frac{\partial f}{\partial x^j}(\xi_j)h^j,$$ где $\xi_j=x_{j-1}+\tau_{j}e_{j}$ – некоторая точка отрезка, соединяющего $x_{j−1}$ и $x_j$. Имеем $\left |x_{0} − \xi_{j}\right | \leq \left |h \right |$. Обозначим
$$\alpha_j(h)=\frac{\partial f}{\partial x^j}(x_0)-\frac{\partial f}{\partial x^j}(\xi_j).$$
По условию все частные производные непрерывны в точке $x_0$ и поэтому
$$\lim_{x\to 0}\alpha_j(h)=0 \quad(j=1,\ldots, n).\quad(12.14)$$
В силу $(12.13)$ имеем
$$f(x_0+h)-f(x_0)=\sum_{j=1}^{n}\frac{\partial f}{\partial x^{j}}(\xi_j)h^j=$$ $$=\sum_{j=1}^{n}\frac{\partial f}{\partial x^{j}}(x_0)h^j-\sum_{j=1}^{n}\alpha_j(h)h^{j}=A(h)+\rho(h), $$
где
$$A(h)=\sum_{j=1}^{n}\frac{\partial f}{\partial x^j}(x_0)h^j,\quad \rho(h)=-\sum_{j=1}^{n}\alpha_j(h)h^j.$$
Итак, $A$ является линейной формой аргумента $h$, а
$$\left | \rho(h) \right |\leq\left | h \right |\sum_{j=1}^{n}\left | \alpha_{j}(h) \right |.$$
Поэтому, в силу соотношений $(12.14)$ получаем, что $\frac{\rho(h)}{\left | h \right |}\to 0$ при $h \to 0$.
Согласно определению дифференцируемости, теорема доказана.

Замечание. Из доказательства видно, что если функция имеет частные производные в некоторой окрестности точки $x_0$ и в этой точке все они непрерывны, то функция дифференцируема в точке $x_0.$

Следствие. Каждая функция класса $C^1$ непрерывна.

Замечание. Непрерывность частных производных – только достаточное условие дифференцируемости. Оно не является необходимым.

Пример. Пусть
$$f(x)=\left\{\begin{matrix}
\left | x \right | ^2\sin \frac{1}{\left | x \right |^2}, \quad x\neq0,
&\\ 0, \quad x=0.
\end{matrix}\right.$$
Найдем частные производные
$$\frac{\partial f}{\partial x^{i}}(x)=2x^{i}\sin \frac{1}{\left | x \right |^2}-\frac{2x^i}{\left | x \right |^2}\cos \frac{1}{\left | x \right |^2}\quad(x \neq 0).$$
При $x = 0$ наша функция дифференцируема, т. к. $f(h) − f(0) = f(h) =\bar{o}(\left | h \right |)$. Однако, как легко видеть, все частные производные разрывны в точке $x = 0$.

Примеры решения задач

  1. Найти частные производные первого порядка функции $f(x,y)=\sin \frac{x}{y} \cos \frac{y}{x}:$

    Решение

    Область определена функции $\mathbb{R}.$ Фиксируя переменную $y$, находим
    $$\frac{\partial f}{\partial x}=\frac{y^{2}\sin \frac{x}{y}\sin \frac{y}{x} + x^{2}\cos \frac{x}{y}\cos \frac{y}{x}}{x^{2}y}.$$
    Фиксируя переменную $x$, получаем
    $$\frac{\partial f}{\partial y}=\frac{-y^{2}\sin \frac{x}{y}\sin \frac{y}{x}-x^2\cos \frac{x}{y}\cos \frac{x}{y}}{xy^{2}}.$$

  2. Найти дифференциал функции $f(x,y)=\frac{y}{x}+\frac{x}{y}$, если

    Решение

    Найдем частные производные:
    $$\frac{\partial f}{\partial x}=-\frac{y}{x^2}+\frac{1}{y},$$
    $$\frac{\partial f}{\partial y}=\frac{1}{x}-\frac{x}{y^2}.$$
    Теперь подставляя полученные частные производные в формулу: $\mathrm{d}f=f’_{x}\mathrm{d}x+f’_{y}\mathrm{d}y$, получаем:
    $$\mathrm{d}f=(-\frac{y}{x^2}+\frac{1}{y})\mathrm{d}x+(\frac{1}{x}-\frac{x}{y^2})\mathrm{d}y.$$

Смотрите также

  1. Тер-Крикоров А. М., Шабунин М. И. Курс математического анализа: страницы 241-255.
  2. Кудрявцев Л. Д. Курс математического анализа: страницы 240-253

Частные производные

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме

5.1 Дифференцируемость и производная

$\DeclareMathOperator{\tg}{tg} \DeclareMathOperator{\sign}{sign} \DeclareMathOperator{\sgn}{sgn}$ Определение 1. Пусть функция $f$ определена на интервале $(a, b)$ и точка $x_0 ∈ (a, b).$ Если существует конечный предел $\displaystyle  \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$, то он называется производной функции $f$ в точке $x_0$ и обозначается $f^\prime(x_0)$, или $\displaystyle \frac{df}{dx}(x_0),$ $Df(x_0).$

Определение 2. Пусть функция $f$ определена на интервале $(a, b)$ и точка $x_0 ∈ (a, b).$ Функцию $f$ будем называть дифференцируемой в точке $x_0,$ если существует такая постоянная $A$ (зависящая от $x_0$ и не зависящая от $x$), что справедливо равенство: $$f(x) − f (x_0) = A (x − x_0) + r(x), $$где $r(x) = \overline{o} (x − x_0) \: \: \: (x \to x_0).$

Короче определение дифференцируемости можно записать в следующем виде: $$f(x) − f (x_0) = A (x − x_0) + \overline{o} (x − x_0) \: \: \: (x \to x_0).$$
Покажем, что эти два определения эквивалентны в том смысле, что дифференцируемость функции равносильна существованию производной.

Теорема. Функция $f$ дифференцируема в точке $x_0 ∈ (a, b)$ тогда и только тогда, когда у $f$ существует производная в точке $x_0.$

Пусть $f$ дифференцируема в точке $x_0.$ Это означает, что $f(x) − f (x_0) = A (x − x_0) + \overline{o} (x − x_0),$ где $A$ не зависит от $x$. Отсюда получаем:
$$\displaystyle \frac{f(x)-f(x_0)}{x-x_0} = A+\frac{\overline{o} (x − x_0)}{x-x_0}.$$
Тогда, учитывая определение символа $\overline{o}$, имеем
$$\displaystyle \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}=A+\lim_{x\to x_0} \frac{\overline{o} (x − x_0)}{(x − x_0)} =A$$ т. е. существует $f^\prime(x_0) = A.$
Обратно, если существует $$\displaystyle \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = f^\prime(x_0),$$ то $$ \displaystyle \frac{f(x)-f(x_0)}{x-x_0} + f^\prime(x_0) = r_1(x),$$ где $r_1(x) \to 0 (x \to x_0)$. Отсюда следует, что $$ f(x) — f(x_0) = f^\prime(x_0)(x-x_0)+r_1(x)(x-x_0).$$ Обозначим $r(x)=r_1(x)(x-x_0).$ Тогда $r(x)=\overline{o}(x-x_0),$ т. е. $$ f(x) − f (x_0) = f^\prime(x_0)(x-x_0)+\overline{o}(x-x_0) \: \: \: (x\to x_0), $$ а это и означает, что $f$ дифференцируема в точке $x_0$, причем $A= f^\prime(x_0).$

Итак, условие дифференцируемости равносильно наличию производной. Смысл дифференцируемости состоит в том, что в некоторой окрестности точки $x_0$ функция $f$ представима в виде линейной функции $l(x)= f (x_0)+f (x_0) f^\prime(x-x_0)$ приближенно с точностью до величины бесконечно малой более высокого порядка, чем $(x-x_0) $ при $x\to x_0.$

Связь между дифференцируемостью и непрерывностью устанавливает следующая

Теорема. Если функция $f$ дифференцируема в точке $x_0$, то она непрерывна в этой точке.

Дифференцируемость $f$ означает, что
$$ f(x) − f (x_0) = A(x_0)(x-x_0)+\overline{o}(x-x_0) \: \: \: (x\to x_0). $$
Отсюда следует, что $\displaystyle \lim_{x\to x_0} (f(x)-f(x_0)) = 0$, т. е. $\displaystyle \lim_{x\to x_0} f(x)=f(x_0)$, и тем самым теорема доказана.

Обратное утверждение неверно. Именно из непрерывности функции $f$ не следует ее дифференцируемость. Примером может служить функция $f(x)=|x|,$ непрерывная в точке $x_0 = 0$, для которой выражение $$\displaystyle \frac{f(x)-f(x_0)}{x-x_0} = \frac{|x|}{x} = \sign x $$ не имеет предела $x\to 0$ и, следовательно, функция $f$ не имеет производной в точке $x_0 = 0$. Значит, $ f$ не является дифференцируемой в нуле.

Итак, непрерывность – это необходимое, но не достаточное условие дифференцируемости. Другими словами, если функция разрывна в точке $x_0$, то она недифференцируема в этой точке. Обратное неверно.

С геометрической точки зрения производная $f^\prime(x_0)$ представляет собой тангенс угла наклона касательной к графику функции $y = f(x)$ в точке $M_0(x_0, f (x_0))$. При этом касательной к графику функции $f$ в точке $M_0$ называется предельное положение секущей $M_0M$ при стремлении точки $M (x, f(x))$ вдоль кривой $y = f(x)$ к точке $M_0$. В самом деле, если функция  $f$ дифференцируема в точке $x_0$, то при стремлении $M$ к $M_0$ вдоль кривой $y = f(x)$ секущая $M_0M$ имеет тангенс угла наклона, равный $$ \displaystyle \tg\alpha(x) = \frac{f(x)-f(x_0)}{x-x_0}, $$ и при $ x \rightarrow x_0 $ точка $M$ стремится к $M_0$ вдоль кривой $y = f(x)$. Так как $$\displaystyle  \frac{f(x)-f(x_0)}{x-x_0} \to f^\prime(x_0)  \: \: \: (x\to x_0), $$ то $\tg\alpha(x) \to f^\prime(x_0) $ при $x\to x_0$, т. е. секущая стремится занять некоторое предельное положение, тангенс угла наклона $\alpha_0$ которого равен $f^\prime(x_0)$.Отсюда получаем уравнение касательной к графику дифференцируемой в точке $x_0$ функции $y = f(x):$ $$k(x)=f(x_0)+f^\prime(x_0) (x-x_0).$$

Примеры решения задач

  1. Найти производную $f(x) = \sin x $ в точке $x_0 = 0.$
    Решение

    Пример можно легко решить, пользуясь определением производной, а так же первым замечательным пределом:
    $ \displaystyle \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}= \lim_{x\to 0} \frac{\sin x — \sin 0}{x-0}=\lim_{x\to 0} \frac{\sin x }{x}=1.$

  2. Пусть $f(x) = x^{2}$ Тогда производная $f^\prime(x_0)$ равна?
    Решение

    $\displaystyle f^\prime(x_0) = \lim_{x\to x_0} \frac{x^2-x^2_0}{x-x_0} = \lim_{x\to x_0} \frac{(x-x_0)(x+x_0)}{x-x_0}=$
    $\displaystyle = \lim_{x\to x_0} (x+x_0) = 2x_0$

  3. Пусть $f(x) = \left|x \right |$ и если $x_0 \neq 0$ существует ли $f^\prime(x_0)$?
    Решение

    $f^\prime(x_0) = \sgn x_0$, где $\sgn$ обозначает функцию знака. А если $x_0 = 0$ $f^\prime_+(x_0)=1,$ $f^\prime_-(x_0)=-1,$ а следовательно $f^\prime(x_0)$ не существует.

  4. Найдите уравнение касательной к графику функции $y=e^{2x-3}$ в точке $x_0 = 5,$ а также угол наклона касательной в этой точке.
    Решение

    Известно, что уравнение касательной в точке имеет вид $l={f}\left(x_{0}\right)+{f}’\left(x_{0}\right)\left(x-x_{0}\right),$ причём ${f}’\left(x_{0}\right)=\mathrm{tg}\alpha,$ где $\alpha$ — угол наклона касательной.
    Находим значение касательной в точке 5, получаем ${f}^\prime\left(x\right)=2e^{2x-3},$ а в точке $x_{0}=5: \, {f}^\prime\left(5\right)=2e^{7} \Rightarrow$ $l = e^{7}+2e^{7}\left(x-5\right) =$
    $ -9e^{7}+2e^{7}x$, $\alpha = \mathrm{arctg}\left(2e^{7}\right).$

  5. Найдите по определению $\sin x.$ на множестве $\mathbb{R}$
    Решение

    Воспользуемся определением производной $(\sin x)^\prime:$
    $
    (\sin x)^\prime = \displaystyle \lim_{\Delta x\to 0} \frac{\sin(x+\Delta x)-\sin x}{\Delta x} = \\
    = \displaystyle \frac{2\sin \frac{\Delta x}{2}\cdot \cos(x+\frac{\Delta x}{2})}{\Delta x} = \\
    = \displaystyle \frac{\sin \frac{\Delta x}{2}}{\frac{\Delta x}{2}} \cdot \cos(x+\frac{\Delta x}{2})
    $
    Теперь сделаем подстановку $ \displaystyle \frac{\Delta x}{2} = t$ . При $\Delta x \to 0, $ $t \to 0.$ Применим первый замечательный предел:
    $ \displaystyle \lim_{\Delta x\to 0} \frac { \sin \frac{\Delta x}2}{\frac{\Delta x}2} = \lim_{t\to 0} \frac{\sin t}{t} = 1.$
    Сделаем такую же подстановку $\displaystyle \frac{\Delta x}{2} = t$ и используем свойство непрерывности:
    $\displaystyle \lim_{\Delta x\to 0} \left ( \cos x + \frac{\Delta x}{2} \right) = \lim_{t\to 0} \cos (x+t)= \cos x.$

Смотрите также

  1. Тер-Крикоров А. М., Шабунин М.И. Курс математического анализа: Учеб. пособие для вузов. – 3-е изд., исправл. / А. М. Тер-Крикоров, М.И. Шабунин. – Москва: ФИЗМАТЛИТ, 2001. – 672 с. — с. 123-133.
  2. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: учеб. пособие для ун-тов и пед. ин-тов. Т. 1 / Г. М. Фихтенгольц. — 5-е изд., стереотип. — Москва: Физматгиз, 1962. — 607 с. — с. 186-214.
  3. Кудрявцев Л. Д. Курс математического анализа : учебник для вузов: В 3 т. Т. 1. Дифференциальное и интегральное исчисления функций одной переменной / Л. Д. Кудрявцев. — 5-е изд., перераб. и доп. — Москва: Дрофа, 2003. — 703 с. — с.271-280.

Дифференцируемость и производная

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме «Дифференцируемость и производная».

Вычисление криволинейных интегралов первого рода

Пусть дана гладкая кривая \Gamma, которая задана уравнением в координатной форме, то есть \Gamma =\left \{ x = x(t), y = y(t), z = z(t), \alpha \leq t\leq \beta \right \} и пусть функция f(x, y, z) непрерывна вдоль кривой \Gamma. Тогда существует криволинейный интеграл первого рода \int_{\Gamma}f(x, y, z)ds и выполняется равенство:
$${ \underset {\Gamma}{ \int }}f(x, y, z)\,ds = \overset {\beta}{ \underset {\alpha}{ \int }} f(x(t), y(t), z(t))\sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2}\,dt.$$

Замечания:

  • Если \Gamma =\left \{ y = \psi(x), \alpha \leq x\leq \beta \right \} и y = \psi(x) непрерывно дифференцируема на отрезке [a,b] и существует криволинейный интеграл первого рода \int_{\Gamma}f(x, y)ds, то выполняется равенство:
    $${ \underset {\Gamma}{ \int }}f(x, y)\,ds = \overset {\beta}{ \underset {\alpha}{ \int }} f(x, \psi(x))\sqrt{1 +(\psi'(x))^2}\,dx.$$
  • Если \Gamma =\left \{ x = \varphi  (y), \alpha \leq y\leq \beta \right \}, то
    $$ { \underset {\Gamma}{ \int }}f(x, y)\,ds = \overset {\beta}{ \underset {\alpha}{ \int }} f(\varphi (y), y)\sqrt{1 +(\varphi'(y))^2}\,dy.$$


    Пример показать
    .
  • В случае, если кривая \Gamma задана в полярной системе координат, то есть \Gamma = \left \{ \left. r = r(\varphi), \varphi_1\leq \varphi \leq \varphi _2 \right \} \right. и r(\varphi) непрерывно дифференцируема на отрезке [\varphi_1, \varphi_2], то выполняется равенство:
    $${ \underset {\Gamma}{ \int }}f(x, y)\,ds = \overset {\varphi_2}{ \underset {\varphi_1}{ \int }} f(r(\varphi) \cos\varphi, r(\varphi) \sin\varphi)\sqrt{{r}^2(\varphi) + {(r'(\varphi))^2}}\,d\varphi.$$


    Пример показать

Литература

Тест

Данный тест поможет Вам проверить уровень знаний по данной теме.


Таблица лучших: Криволинейные интегралы. Вычисление

максимум из 3 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Дифференцируемость функции в точке и существование частных производных

Дадим определение дифференцируемости функции в точке.
Определение. Функция $f \left( x \right) = f \left( x_1, \dots, x_n \right)$ называется дифференцируемой в точке $x^0 = \left( x_1^0, \dots, x_n^0 \right)$, если она определена в некоторой окрестности этой точки и существуют такие числа $A_1, \dots, A_n$, что $$f \left( x \right) — f \left( x^0 \right) = \sum\limits_{i = 1}^{n} A_i \left( x_i — x_i^0 \right) + o \left( \rho \left( x, x^0 \right) \right) \qquad (2)$$ при $x \to x^0$.
Теорема 1. Функция $f \left( x \right)$ дифференцируема в точке $x^0$ в том и только том случае, когда в некоторой окрестности точки $x^0$ функция $f \left( x \right)$ может быть представлена в следующем виде: $$f \left( x \right) = f \left( x^0 \right) + \sum\limits_{i = 1}^{n} f_i \left( x \right) \left( x_i — x_i^0 \right), \qquad (2)$$ где функции $f_i \left( x \right)$ непрерывны в точке $x^0$.

Доказательство показать

Упражнение 1. Пусть функции $f \left( x \right)$ и $\varphi \left( x \right)$ определены в окрестности точки $x^0 \in \mathbb{R}^n$, функция $f \left( x \right)$ дифференцируема в точке $x^0$ и $f \left( x^0 \right) = 0$, а функция $\varphi \left( x \right)$ непрерывна в точке $x^0$. Доказать, что функция $f \left( x \right) \varphi \left( x \right)$ дифференцируема в точке $x^0$.
Упражнение 2. Доказать, что функция $$\left( x + y \right) \left( x^3 + y^3 \right) ^{\frac{1}{3}}$$ дифференцируема в точке $\left( 0, 0 \right)$.
Указание. Воспользоваться результатом упр. 1.
Пример 1. Показать, что функция $$f \left( x, y \right) = \sqrt[3]{x^3 + y^4}$$дифференцируема в точке $\left( 0, 0 \right)$.
Решение показать

Пример 2. Показать, что функция $$f \left( x, y \right) = \sqrt[3]{x^3 + y^3}$$недифференцируема в точке $\left( 0, 0 \right)$.
Решение показать

Из теоремы 1 следует, что функция $f \left( x \right)$, дифференцируемая в точке $x^0$, непрерывна в этой точке. Обратное утверждение неверно: функция примера 2 непрерывна, но недифференцируема в точке $\left( 0, 0 \right)$.

Необходимое условие дифференцируемости функции в точке.

Теорема 2. Если функция $f \left( x \right)$ дифференцируема в точке $x^0 \in \mathbb{R}^n$, то она имеет в точке $x^0$ все частные производные $\frac{ \partial f }{ \partial x_i } \left( x^0 \right)$, $i = \overline{1, n}$, и $$f \left( x \right) — f \left( x^0 \right) = \\ = \sum\limits_{i = 1}^{n} \frac{ \partial f }{ \partial x_i } \left( x^0 \right) \left( x_i — x_i^0 \right) + o \left( \rho \left( x, x^0 \right) \right), x \to x^0. \qquad (6)$$

Доказательство показать

Функция примера 2 имеет в точке $\left( 0, 0 \right)$ обе частные производные первого порядка: $$\frac{ \partial f }{ \partial x } \left( 0, 0 \right) = \lim\limits_{x \to 0} \frac{ f \left( x, 0 \right) — f \left( 0, 0 \right) }{ x } = \\ = \lim\limits_{x \to 0} \frac{ \sqrt[3]{x^3} }{ x } = 1, \frac{ \partial f }{ \partial y } \left( 0, 0 \right) = 1.$$ Так как функция $f \left( x, y \right) = sqrt[3]{x^3 + y^3}$ примера 2 недиффиринцируема в точке $\left( 0, 0 \right)$, то этот пример показывает, что из существования частных производных в точке не следует дифференцируемость функции в этой точке. Существование частных производных функции в точке не гарантирует даже непрерывности функции в этой точке.
Так, функция $$f \left( x \right) = \begin{cases} \frac{2xy}{x^2+y^2}, & x^2 + y^2 > 0, \\ 0, & x = y = 0 \end{cases}$$ не имеет предела при $\left( x, y \right) \to \left( 0, 0 \right)$, а поэтому и не является непрерывной в точке $\left( 0, 0 \right)$. Тем не менее у этой функции в точке $\left( 0, 0 \right)$ существуют обе частные производные: $$\frac{ \partial f }{ \partial x } \left( 0, 0 \right) = \lim\limits_{x \to 0} \frac{ f \left( x, 0 \right) — f \left( 0, 0 \right) }{ x } = 0, \frac{ \partial f }{ \partial y } \left( 0, 0 \right) = 0.$$

Достаточные условия дифференцируемости функции в точке.

Теорема 3. Если все частные производные $\frac{ \partial f }{ \partial x_i }$, $i = \overline{1, n}$ определены в окрестности точки $x^0 \in \mathbb{R}^n$ и непрерывны в точке $x^0$, то функция $f \left( x \right)$ дифференцируема в точке $x^0$.

Доказательство показать

Непрерывность частных производных в точке не является необходимым условием дифференцируемости функции в этой точке.
Функция $$f \left( x, y \right) = \begin{cases} \left( x^2 + y^2 \right) \sin \frac{ 1 }{ \sqrt{ x^2 + y^2 } }, & x^2 + y^2 > 0, \\ 0, & x = y = 0, \end{cases}$$ дифференцируема в точке $\left( 0, 0 \right)$, так как $$f \left( x, y \right) = 0 \cdot x + 0 \cdot y + o \left( \sqrt{ x^2 + y^2 } \right), \left( x, y \right) \to \left( 0, 0 \right).$$ Но при $x^2 + y^2 > 0$ частная производная$$\frac{ \partial f }{ \partial x } \left( x, y \right) = 2x \sin \frac{ 1 }{ \sqrt{ x^2 + y^2 } } — \frac{ x }{ \sqrt{ x^2 + y^2 } } \cos \frac{ 1 }{ x^2 + y^2 }$$ не имеет предела при $\left( x, y \right) \to \left( 0, 0 \right)$ и, следовательно, не является непрерывной функцией в точке $\left( 0, 0 \right)$. Чтобы в этом убедиться, достаточно показать, что $\frac{ \partial f \left( x, 0 \right) }{ \partial x }$ не имеет предела при $x \to 0$.

Список литературы

Тест

Тест для проверки усвоения материала

Собственные интегралы, зависящие от параметра, и их свойства

Пусть заданы два некоторых множества $X \subset R$ и $Y \subset R$, где $Y$ — множество параметров, а $X$ представляет из себя некоторый отрезок $[a, b]$ — множество переменных. Тогда определим множество
$$K=\left\{ { (x,y) }|{ \begin{matrix} x\in X \\ y\in Y \end{matrix} } \right\} (K\subset { R }^{ 2 }).$$

На заданном множестве $K$ зададим некоторую функцию $f(x,y)$ и предположим, что, для каждого фиксированного $y \in Y$, она интегрируема по Риману на промежутке $[a,b]$ (в данной работе мы рассматриваем только собственные интегралы). Тогда заданную функцию
$$J(y)= \intop_{a}^{b} f(x,y)dx$$
назовем интегралом, зависящим от параметра $y$.

Так как нами введена новая функция, логично рассмотреть некоторые ее свойства.

Свойство непрерывности собственного интеграла, зависящего от параметра

Теорема (о непрерывной зависимости интеграла от параметра). Пусть на некотором множестве определена функция $f(x,y)$ и собственный интеграл, зависящий от параметра
$$J(y)= \intop_{a}^{b} f(x,y)dx$$
и $f$ непрерывна в прямоугольнике
$$K=\left\{ { (x,y) }|{ \begin{matrix} a\le x\le b \\ c\le y\le d \end{matrix} } \right\}.$$
Тогда функция $J(y)$ непрерывна на отрезке $[c, d]$.

Доказательство показать

Как важное практическое применение данной теоремы, например, можем определить возможность переходить к пределу под знаком интеграла, при выполнении других необходимых для этого условий, а именно:
$$\lim _{ y\rightarrow { y }_{ 0 } }{ \intop _{ a }^{ b }{ f(x,y)dx=\intop _{ a }^{ b }{ \lim _{ y\rightarrow { y }_{ 0 } } f(x,y)dx=\intop _{ a }^{ b }{ f(x,{ y }_{ 0 })dx\quad \forall } { y }_{ 0 }\in [c,d] } } }.$$

Свойство дифференцируемости собственного интеграла, зависящего от параметра

Теорема (о дифференцируемости интеграла от параметра). Пусть функция $f(x,y)$ вместе со своей частной производной $\frac { \partial }{ \partial y } f\left( x,y \right)$ непрерывна в прямоугольнике
$$K=\left\{ { (x,y) }|{ \begin{matrix} a\le x\le b \\ c\le y\le d \end{matrix} } \right\}.$$
Тогда собственный интеграл, зависящий от параметра
$$J(y)= \intop_{a}^{b} f(x,y)dx$$
является непрерывно дифференцируемой функцией на отрезке $[c,d],$ причем справедливо следующее равенство:
$${ J }^{ \prime } \left( y \right) =\frac { d }{ dy } \intop_{ a }^{ b }{ f\left( x,y \right) dx } =\intop_{ a }^{ b }{ \frac { \partial }{ \partial y } f\left( x,y \right) dx } ,\quad \forall y\in \left[ c,d \right].$$

Заметим, что указанное выше равенство называется правилом Лейбница: «Производная интеграла, зависящего от параметра, равна интегралу от производной подынтегральной функции по заданному параметру».

Доказательство показать

Обобщив указанную ранее теорему, можем получить формулу Лейбница для случая, когда пределы интегрирования являются некоторыми функциями, зависящими от параметра $y$.

Формула Лейбница дифференцирования под знаком интеграла, зависящего от параметра, пределы интегрирования которого зависят от переменной дифференцирования

Пусть пределы интегрирования собственного интеграла зависящего от параметра $y$ – некоторые непрерывно дифференцируемые на отрезке $[c, d]$ функции, зависящие от данного параметра: $a(y),b(y)$. Тогда пусть задана функция $f(x,y)$ вместе со своей частной производной $\frac { \partial }{ \partial y } f\left( x,y \right)$ непрерывны в области
$$K=\left\{ { (x,y) }|{ \begin{matrix} a\left( y \right) \le x\le b\left( y \right) \\ c\le y\le d \end{matrix} } \right\}.$$
Тогда
$$J(y)= \intop_{a(y)}^{b(y)} f(x,y)dx$$
дифференцируема на $[c,d]$, причем
$${ J }^{ \prime }\left( y \right) =\intop _{ a\left( y \right) }^{ b\left( y \right) }{ \frac { \partial }{ \partial y } f\left( x,y \right)dx -f\left( a\left( y \right) ,y \right) \cdot { a }^{ \prime }\left( y \right) +f\left( b\left( y \right) ,y \right) \cdot { b }^{ \prime }\left( y \right) }.$$

Доказательство показать

Свойство интегрируемости собственного интеграла, зависящего от параметра

Теорема (о интегрируемости интеграла от параметра). Пусть задана $f(x,y)$ непрерывная на некотором прямоугольнике
$$K=\left\{ { (x,y) }|{ \begin{matrix} a\le x\le b \\ c\le y\le d \end{matrix} } \right\}.$$
Тогда функция (собственный интеграл, зависящий от параметра)
$$J(y)= \intop_{a}^{b} f(x,y)dx$$
интегрируема на отрезке $[c, d]$, причем
$$\intop _{ c }^{ d }{ { J }\left( y \right) dy } =\intop _{ c }^{ d }{ \left( \intop _{ a }^{ b }{ f\left( x,y \right) dx } \right) dy } =\intop _{ a }^{ b }{ \left( \intop _{ c }^{ d }{ f\left( x,y \right) dy } \right) dx }.$$

Доказательство показать

Данное свойство дает нам возможность интегрировать исходную функцию $J(y)$ по параметру $y$ под знаком интеграла.

Примеры и практическая значимость

Следует заметить, что введенный нами математический объект имеет достаточно интересное применение не только в плане непосредственного вычисления. Например, собственные интегралы, зависящие от параметра $x$, такого вида
$${ J }_{ n }\left( x \right) =\frac { 1 }{ \pi } \intop _{ 0 }^{ \pi }{ \cos { \left( x\cdot \sin { \varphi } -n\cdot \varphi \right) } d\varphi } ,$$ $${ J }_{ n }\left( x \right) =\frac { 1 }{ 2\pi } \intop _{ -\pi }^{ \pi }{ { e }^{ i\left( n\cdot \varphi -x\cdot \sin { \varphi } \right) }d\varphi } ,$$
где $n$ – некоторое целое число, являются интегральным представлением функций Бесселя первого рода. Интегральный подход использовал сам Бессель для изучения некоторых интересных свойств этих функций.

Такие функции имеют разнообразное применение не только в математических дисциплинах. Например, они применяются в решении задач о статических потенциалах, распространении волн, формы колебания тонкой круглой мембраны, обработке сигналов и т.д.


Bessel functions

Графическое представление функций Бесселя первого рода $0$, $1$ и $2$ порядков

Для более глубокого понимания темы, к рассмотрению предлагается практическое задание.

Пример показать

Примечание

*На данном этапе существуют разногласия по поводу применения формулы конечных приращений Лагранжа для доказательства данной теоремы, основанные на том, что вообще говоря $\theta_{x}$ представляет из себя некоторую функцию зависящую от переменной $x$, что вызывает вопрос не нарушает ли она непрерывность, а следовательно, и интегрируемость подынтегрального выражения. Несмотря на это в большинстве рассмотренных источников указано именно такое доказательство, аргументированное тем, что $\theta_{x} \in (0, 1)$ не меняет условия принадлежности рассматриваемой точки исходному отрезку. Если же читатель не согласен с таким применением теоремы Лагранжа о среднем значении, то доказать свойство дифференцируемости собственного интеграла, зависящего от параметра, можно аналогично доказательству свойства непрерывности, которое было приведено ранее.

Тест: собственные интегралы, зависящие от параметра

Для закрепления материала темы, рекомендуется пройти следующий тест.


Таблица лучших: Тест: собственные интегралы, зависящие от параметра

максимум из 19 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных