Смешанные задачи на комплексные числа

Для того чтобы приступить к работе над этим пунктом, необходимо иметь понимание о том, что написано в 3 предыдущих пунктах этой темы, а так-же соответствующий теоретический материал.

Здесь представлены некоторые примеры задач в которых нужно преобразовать комплексное число из одной формы в другую для их решения.

Пример 1
Представим число $z=\sqrt{3}+i$ в геометрической и тригонометрической форме.

Вспомним если $a+ib$ и $r(\cos{\alpha}+i\sin{\alpha})$ два представления одного и того-же комплексного числа, то $r=\sqrt{a^2+b^2}$, $\cos{\alpha}=\frac{a}{r}$ и $\sin{\alpha}=\frac{b}{r}$.

Получаем $r=\sqrt{3+1}=2$ и $\alpha = \frac{\pi}{6}$, то-есть $z_1=2(\cos{\frac{\pi}{6}}+i\sin{\frac{\pi}{6}})$ — тригонометрическая форма комплексного числа.

Зная, что в представлении $z=a+ib$, $Re(z)=a$, $Im(z)=b$, получаем что в комплексной плоскости точка представляющая комплексное число имеет координаты $(a,b)$.

Получаем $Z_2(\sqrt{3},1)$ — геометрическая форма комплексного числа.

Пример 2
Найдем г.м.т. точек $z$, если $z=4(\cos{\alpha}+i\sin{\alpha})$ и $0\leq \alpha \leq \frac{\pi}{2}$.

Имеем $|z|=r=4$, $a=4\cos{\alpha}=Re(z)$, $b=4\sin{\alpha}=Im(z)$, отсюда и из условия получаем $0\leq a \leq 4$, $0\leq b \leq 4, a^2+b^2=16$. Получаем четверть круга радиуса $4$, расположенная в первой четверти декартовых координат. Так-же решение очевидно, если использовать полярную систему координат.

imgc2

Пример 3
Найдем комплексное число $z=\frac{(1-i\sqrt{3})(\cos{\alpha}+i\sin{\alpha})}{(1-i)(\cos{\alpha}-i\sin{\alpha})}$.

Для на чала преобразуем комплексные числа $z_1=1-i\sqrt{3},z_2=1-i$ в тригонометрическую форму. Получим $z_1=2(\cos{\frac{5\pi}{3}}+i\sin{\frac{5\pi}{3}})$ и $x_2=\sqrt{2}(\cos{\frac{7\pi}{4}}+i\sin{\frac{7\pi}{4}})$.

Подставив найденное в исходное выражение, получим что оно состоит только из комплексных чисел в тригонометрической форме. Решим полученное.
$$\frac{2(\cos{\frac{5\pi}{3}}+i\sin{\frac{5\pi}{3}})(\cos{\alpha}+i\sin{\alpha})}{\sqrt{2}(\cos{\frac{7\pi}{4}}+i\sin{\frac{7\pi}{4}})(\cos{\alpha}-i\sin{\alpha})}=$$
$$=\frac{1}{\sqrt{2}}\cdot\frac{\cos{(\alpha+\frac{5\pi}{3})}+i\sin{(\alpha+\frac{5\pi}{3})}}{\cos{(-\alpha+\frac{7\pi}{4})}+i\sin{(-\alpha+\frac{7\pi}{4})}}=$$
$$=\frac{2}{\sqrt{2}}\cdot(\cos {( — \frac{\pi}{12}+2\alpha )}+i\sin {( — \frac{\pi}{12}+2\alpha )})=z$$

В этой задаче удобно привести комплексное число к тригонометрической форме, так как операции с ними выполняются проще.

Литература

Смешанные задачи на комплексные числа.

Тест на тему «Смешанные задачи на комплексные числа».


Таблица лучших: Смешанные задачи на комплексные числа.

максимум из 5 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Геометрическая интерпретация комплексного числа

Задана плоскость. Зададим на ней декартову систему координат.

геометрическая интерпретация комплексного числа

Данная плоскость называется комплексной. Ось x называется вещественной, а ось y — мнимой. На данном рисунке видно, что геометрически комплексное число представляет из себя вектор. Между алгебраической и геометрической интерпретациями комплексного числа существует биекция z=\left(a,b\right)= a+bi \leftrightarrow M\left(a,b\right)

Определение 1

Модулем комплексного числа z=a+bi называется корень разности квадратов его действительной и мнимой частей.
\left|z\right|= \sqrt{a^{2}+b^{2}}=  \sqrt{\left(\mathrm{Re}\ z\right)^{2}-\left(\mathrm{Im}\ z\right)^{2}}, \left|z\right| \geq 0
\left|z\right| = 0 \Leftrightarrow z=0

Определение 2

Расстояние между двумя векторами на комплексной плоскости вычисляется по формуле:
\left|z_{1}-z_{2}\right|= \left|\left(x_{1}+iy_{1}\right)-\left(x_{2}+iy_{2}\right)\right|=  \sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}

Определение 3

Величина угла, который образует вектор, изображающий данное комплексное число на комплексной плоскости с вещественной осью называется аргументом этого комплексного числа \left(\mathrm{Arg}\ z\right). Угол, отсчитываемый от оси против часовой стрелки считается положительным, а по часовой — отрицательным.

аргумент

\mathrm{Arg}\ z = \mathrm{arg}\ z + 2\pi k, k\in\mathbb Z, 0\leq \mathrm{arg}\ z < 2\pi[/latex], где [latex]\mathrm{arg}\ z[/latex] - главное значение аргумента комплексного числа.</p> </div> <div> <h3>Пример 1</h3> <p><b>Задание:</b><br /> Изобразите графически [latex]1\leq \left|z+1-2i\right|< 2[/latex] <b>Решение:</b><br /> [latex]1\leq \left|z+1-2i\right|= \sqrt{\left(x+1\right)^{2}+\left(y-2\right)^{2}}<2[/latex] Ответ:
пример 1

Пример 2

Задание:
Изобразите графически \frac{\pi}{6}\leq \mathrm{arg}\ z<\frac{\pi}{3}[/latex] Ответ:
пример 2

Литература:

  1. Белозеров Г.С. Конспект лекций
  2. Кострикин А.И. Введение в алгебру. Часть I. Основы алгебры. М.:Физико-математическая литература, 2004, стр. 169-170
  3. Фаддеев Д.К. Лекции по алгебре. М.:Наука, 1984, стр. 31-33

Геометрическая интерпретация комплексных чисел (лекции)

Тест на знание темы: «Геометрическая интерпретация комплексных чисел»


Таблица лучших: Геометрическая интерпретация комплексных чисел (лекции)

максимум из 7 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных