Дифференцируемость композиции дифференцируемых функций

В данной статье, используя термин «сложная функция», мы будем понимать композицию нескольких функций.

Теорема

Пусть функции { \varphi }_{ i }(x)={ \varphi }_{ i }({ x }_{ 1 },{ x }_{ 1 },{ x }_{ 1 },...,{ x }_{ n })\quad i=\overline { 1,m } дифференцируемы в точке { x }^{ \circ }=({ x }_{ 1 }^{ \circ },{ x }_{ 2 }^{ \circ },...,{ x }_{ n }^{ \circ }) . Пусть функция f({ y }_{ 1 },{ y }_{ 2 },{ y }_{ 3 },...{ ,y }_{ m }) дифференцируема в точке { y }^{ \circ }=({ \varphi }_{ 1 }({ x }^{ \circ }),{ \varphi }_{ 2 }({ x }^{ \circ }),...,{ \varphi }_{ m }({ x }^{ \circ })).

Тогда сложная функция T(x)=f({ \varphi }_{ 1 }(x),{ \varphi }_{ 2 }(x),...,{ \varphi }_{ m }(x)) дифференцируема в точке { x }^{ \circ } , причем при { x\rightarrow x }^{ \circ }
$$
T(x)-T({ x }^{ \circ })=\sum _{ i=1 }^{ n }{ { A }_{ i }({ x }_{ i }-{ x }_{ i }^{ \circ })+o(p(x,{ x }^{ \circ }))} 
$$
$$
{A }_{ i }=\frac { \partial T }{ \partial { x }_{ i } } ({ x }^{ \circ  })=\sum _{ j=1 }^{ m }{ \frac { \partial f }{ \partial { y }_{ j } }  } ({ y }^{ \circ  })\frac { \partial { \varphi  }_{ i } }{ \partial { x }_{ i } } ({ x }^{ \circ  }),\quad i=\overline { 1,n } \quad \quad \quad \quad (1)
$$

Доказательство показать
Замечание показать
Пример показать

 

Дифференцируемость композиции дифференцируемых функций

Тест, на понимание темы «Дифференцируемость композиции дифференцируемых функций»

Таблица лучших: Дифференцируемость композиции дифференцируемых функций

максимум из 3 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Виды отображений. Распознавание свойств отображений. Композиция отображений. Обратимость. Примеры

Материал лекций по теме «Отображения, типы отображений, тождественное отображение»

Задача №1

Рассмотрим пример, в котором заданное соответствие не является отображением.

Условие задачи:

Задано f(u) =\left | \frac{ u(u+1)(u+2)}{3} \right|, U=\mathbb Z, V=\mathbb N. Определить, будет ли f: U \rightarrow V отображением.

Решение показать

Рассмотрим задачи, в которых определим вид отображения и исследуем его на обратимость.

Задача №2

Условие задачи:

Заданы U = \mathbb Z, V = \mathbb N, f(u) = u^2+2, f(u): U \rightarrow V. Определить вид этого отображения и исследовать на обратимость.

Решение показать

Задача №3

Условие задачи:

Заданы U=\left[ -\frac{\pi}{2}; \frac{\pi}{2}\right], V=\left[ -1; 1\right], f: U \rightarrow V, f(u) = \sin{u}. Определить вид отображения и исследовать на обратимость.

Решение показать

Задача №4

Условие задачи: Заданы f: \mathbb Q \rightarrow \mathbb Q, g: \mathbb Q \rightarrow \mathbb Q, f(u)=2u, g(u)=\frac{u}{2}. Определить, обладает ли композиция этих отображений свойством коммутативности.

Решение показать

Литература

  • Белозеров Г.С. Конспект лекций по линейной алгебре
  • Кострикин А.И. Введение в алгебру. Часть 1, ФИЗМАТЛИТ, 2001г., стр. 35-38

Виды отображений. Обратимость

Тест

Таблица лучших: Виды отображений. Обратимость

максимум из 8 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Композиция биективных отображений

Определение 1

Отображение $\large f:X \to Y$ называется биекцией и обозначается $\large f:X \leftrightarrow Y$, если оно:

  1.  Переводит элементы множества $X$ в разные элементы множества $Y$ (т.е. выполняется взаимно однозначное отображение — инъекция):
    • $\forall x_{1} \in X$, $\forall x_{2} \in X$, $f(x_{1})=f(x_{2})\Rightarrow x_{1}=x_{2}$.
  2. Любой элемент из $Y$ имеет свой прообраз (т.е. выполняется сюръекция):
    • $\forall y \in Y$, $ \exists $ $x \in X$, $f(x)=y$.

Пример:

  • Изобразим биективное отображение $\large f$, где $f:A \to B$:

    Graphic2
  • Для композиции $g \circ f $, где $f:A \to B,\quad g:B \to C$, рисунок будет выглядеть так:

    Graphic3

Определение 2

Единичным отображением $e_{X}:X \to X$ называется отображение, переводящие каждый элемент $x \in X$ в себя.

Теорема

Пусть $f: X \to Y$, $h: Y \to Z$ — биективные отображения. Тогда биективна и их композиция $ h \circ f$, причем:

$$ (h \circ f)^{-1}=f^{-1} \circ h^{-1}$$
Доказательство:
Биективность $f$ влечёт существование и биективность $f^{-1}$.
Из условия существования обратного отображения для биективных отображений следует:
$$ \left.\begin{aligned} f\circ f^{-1}=e_{Y} \\ f^{-1}\circ f=e_{X}\end{aligned}\right\}
\Rightarrow {(f^{-1})}^{-1}=f$$
Далее существуют отображения:
$f^{-1}: Y\to X \quad h^{-1}: Z \to Y $
$f^{-1}\circ h^{-1}:Z\to X$
Из равенств
$(h\circ f)(f^{-1}\circ h^{-1})=\big( (h\circ f)\circ f^{-1}\big)\circ h^{-1}=\big(h \circ (f\circ f^{-1})\big) \circ h^{-1}=$
$$=h \circ h^{-1}=e_{Z}$$
$(f^{-1} \circ h^{-1})\circ(h \circ f)= f^{-1}\circ \big(h^{-1} \circ (h \circ f) \big)=f^{-1}\circ \big((h^{-1}\circ h) \circ f\big)=$
$$=f^{-1} \circ f=e_{X}$$
вытекает, что $f^{-1}\circ h^{-1}$ — обратное отображение к $h \circ f$.

$\blacksquare$

Список литературы:

  1. Кострикин А. И. Введение в алгебру. — М.: Наука, 1977. стр. 37-38 стр.
  2. Фейс К. Алгебра: кольца, модули и категории. Том 1 — М.: «Мир», 1977. — 40 стр.
  3. Н. К. Верещагин, А. Шень. Часть 1. Начала теории множеств. Лекции по математической логике и теории алгоритмов. — 2-е изд., испр. — М.: МЦНМО, 2002. — 128 стр.

Тест на тему: «Композиция биективных отображений»