Вычисления площадей плоских областей, ограниченных кривыми, заданными параметрически и в полярных координатах

Параметрическое задание

Пусть границами криволинейной трапеции являются прямые x=a, x=b, ось абсцисс и параметрически заданная кривая

 \left\{\begin{matrix} y=\varphi (t); \\ x=\psi (t); \end{matrix} \right.

Причем: функции x и  y непрерывны на интервале [a,b], a<b; x=\varphi (t) монотонно возрастает на этом интервале и \varphi (\alpha )=a, \psi (\beta )=b.

Тогда площадь криволинейной трапеции находится по формуле  S(G)=\int\limits_\alpha ^\beta \psi (t)*\varphi '(t)dt

Эта формула получается из формулы площади криволинейной трапеции S(G)=\int\limits_\alpha ^\beta \psi (t)*\varphi '(t)dt подстановкой: S(G)=\int\limits_\alpha^\beta \psi (t)*\varphi '(t)dt

Если функция является монотонно убывающей на интервале [\beta ,\alpha], \beta < \alpha, то формула примет следующий вид:  S(G)=-\int\limits_{\beta }^{\alpha }\psi (t)*\varphi '(t)dt

Что делать, если нам дана не криволинейная трапеция? Свести данную фигуру к ней. Поделить её на части (прямыми, параллельными абсциссе и ординате), площадь которых уже можно будет посчитать описанным выше способом.

Примеры:

... показать

... показать

Полярное задание

А что, если функции, ограничивающие нашу область, заданы полярно?
Есть простая формула: $$ S=\frac{1}{2} \int\limits_{\alpha }^{\beta }r^{2}d\varphi $$ Здесь \alpha и \beta — значения углов, ограничивающих фигуру, r — расстояние от начала координат до точки, \varphi — угол. Уравнение функции в полярных координатах — r=f(\varphi )

Помните: в полярных координатах тоже стоит делить область на простые части.

Пример:

... показать

Источники:

Тест

Вычисления площадей плоских областей, заданных параметрически и в полярных координатах

В этом тесте предоставлены упражнения по пройденной теме. Если внимательно изучили материал, следовали всем данным ссылкам и рекомендациям,то вам не составит труда выполнить эти задания.

Таблица лучших: Вычисления площадей плоских областей, заданных параметрически и в полярных координатах

максимум из 14 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Вычисление пути и его длины.

Параметрическое задание:

Дано  \left\{\begin{matrix} y=\varphi (t); \\ x=\psi (t); \end{matrix} \right.

Тогда площадь находится по формуле: S=\int_{t_{1}}^{t_{2}}\sqrt{(\varphi' (t))^{2}+(\psi' (t))^{2}}dt

Полярное задание:

Дано r=f(\alpha ), где r — расстояние от точки до начала координат, \alpha — угол между радиус-вектором с концом в этой точке и осью OX.

S=\int_{\alpha _{1}}^{\alpha _{2}}\sqrt{((r\cos \alpha )')^{2}+((r\sin \alpha )')^{2}}dt

Пример:

... показать

Обычное задание:

Дана функция в виде y=f(x).

S=\int_{t_{1}}^{t_{2}}\sqrt{1+(y')^{2}}dx

Пример:

... показать

Почему эти формулы верны?

... показать

Источники:

Фихтенгольц, «Курс дифференциального и интегрального исчисления», 2001 г.,  том 2, стр. 192. Издание 2001 года можно скачать здесь.

Фихтенгольц, «Курс дифференциального и интегрального исчисления», 1964 г.,  том 2, стр. 169. Издание 1964 года можно скачать в меню справа.

Демидович, «Сборник задач и упражнений по математическому анализу», 1997 г., стр. 234-235(примеры задач). Можно также скачать в меню справа.

Теорема о вычислении спрямляемого пути, следствия

Определения

Путем на плоскости называется отображение t \mapsto (\varphi (t),\psi (t)) отрезка \left [ \alpha,\beta \right ] в \mathbb{R}^{2}, задаваемое парой непрерывных функций \varphi и \psi. Это означает, что каждому значению t\in \left [ \alpha,\beta \right ] ставится в соответствие точка плоскости с координатами \left ( x,y \right ), где x=\varphi (t),y=\psi(t).
След пути — множество точек \left \{ \left ( \varphi (t),\psi (t) \right )\in \mathbb{R}^{2}:\, t\in\left [ \alpha ,\beta \right ] \right \}.
Длина пути — точная верхняя грань длин ломанных, вписанных в след пути.
Если длина пути конечна, то путь называется спрямляемым.
Если функции \varphi и \psi непрерывно дифференцируемы на отрезке \left [ \alpha ,\beta \right ], то путь \gamma =(\varphi ,\psi ) называется дифференцируемым.

Теорема

Дан путь \gamma\left\{\begin{matrix} x=\varphi (t)\\y=\psi (t) \end{matrix}\right.

Пусть \gamma = (\varphi ,\psi ) непрерывно дифференцируемый путь на отрезке \left [ \alpha ,\beta \right].
Тогда L_{(\gamma )}=\int_{\alpha }^{\beta }\sqrt{\left [ \varphi ^{'}(t)\right ]^{2}+\left [ \psi ^{'}(t)\right ]^{2}}dt, где L_{(\gamma )} — длина пути.

Доказательство

Часть 1

\square \Pi :\alpha =x_{0}<x_{1}< ... <x_{n}=\beta — произвольное разбиение отрезка \left [ \alpha ,\beta \right]. Возьмём ломаную, проведённую между точками с соседними номерами. Очевидно, её длина:
S=\Sigma _{1}^{n-1}\sqrt{(x_{i+1}-x_{i})^{2}+(y_{i+1}-y_{i})^{2}} — как сумма расстояний между соседними точками.
По формуле конечных приращений:

  • x_{i+1}-x_i=\varphi '(t_i)(t_{i+1}-t_i);
  • y_{i+1}-y_i=\psi '(t_i)(t_{i+1}-t_i);

Тогда длина ломаной будет равна: S=\Sigma _{1}^{n-1}\sqrt{(\varphi '(t))^{2}+(\psi '(t))^{2})}(t_{i+1}-t_i).
Обозначим наибольшие значения производных \psi '(t) и \varphi '(t) :
L=sup(|\psi '(t)|) и \overline{L}=sup(|\varphi '(t)|).
Очевидно: S\leq \sqrt{L^{2}+\overline{L}^2}(T-t_{0}), T и t_0  — границы отрезка. Из неравенства делаем вывод, что путь спрямляем, так как длина ломаной ограничена сверху.
Аналогично, можно получить формулу:
S\geq \sqrt{l^{2}+\overline{l}^2}(T-t_{0}), где l=inf(|\psi '(t)|), \overline{l}=inf(|\varphi '(t)|)

Часть 2

У нас имеются выведенные в части 1 неравенства:

  • S\leq \sqrt{L^{2}+\overline{L}^{2}}(T-t_0);
  • S\geq \sqrt{l^{2}+\overline{l}^{2}}(T-t_0);

Получаем: \sqrt{L^2+\overline L^2}(T-t_0)\geq S\geq \sqrt{l^2+\overline l^2}(T-t_0), p=inf(S)
А теперь возьмём точку a_1 на нашей дуге с координатами (t_1,y_1). Придадим её абсциссе приращение \Delta t и получим точку a_2(t_1+\Delta t, y_2). Получили две точки на дуге и часть дуги ограничена этими точками. Применим к этой части наше двойное неравенство.
При \Delta t \rightarrow 0 левая часть стремится к \sqrt{(\varphi '(t))^2+(\psi '(t))^2}\Delta t. Аналогично, для правой.
Получаем \sqrt{(\varphi '(t))^2+(\psi '(t))^2}\Delta t\geq S\geq \sqrt{(\varphi '(t))^2+(\psi '(t))^2}\Delta t. Преобразуем это двойное неравенство:
\sqrt{(\varphi '(t))^2+(\psi '(t))^2}\geq \frac{S}{\Delta t}\geq \sqrt{(\varphi '(t))^2+(\psi '(t))^2}.
L^{'}_{(\gamma )}=\sqrt{(\varphi '(t))^2+((\psi '(t))^2}.
Тогда L_{(\gamma )}=\int_{\alpha }^{\beta }\sqrt{\left [ \varphi ^{'}(t)\right ]^{2}+\left [ \psi ^{'}(t)\right ]^{2}}dt, где L_{(\gamma )} — длина пути. \blacksquare

Замечание: В первоисточниках, использованных при написании этого материала, доказательство теоремы не разбивается на 2 части. Тем не менее, для большего удобства здесь оно разбито на 2 основных части.

Следствия из теоремы

Из доказанной выше формулы получаются три формулы, описанные здесь и применяемые на практике.

Литература:

  1. Фихтенгольц, «Курс дифференциального и интегрального исчисления», 2001 г.,  том 2, стр. 192 (следствия). Фихтенгольц, «Курс дифференциального и интегрального исчисления», 2001 г.,  том 1, стр. 192 (определения, теорема).
  2. Фихтенгольц, «Курс дифференциального и интегрального исчисления», 1964 г.,  том 2, стр. 169 (следствия). Фихтенгольц, «Курс дифференциального и интегрального исчисления», 1964 г., том 1, стр. 560,562-563 (определения, теорема).

Тест

Таблица лучших: Теорема о вычислении спрямляемого пути, следствия

максимум из 9 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Бесконечно малые функции

Если \lim_{x\rightarrow a }f(x)=0, то функция f(x) называется бесконечно малой при x\rightarrow a.

Свойства

  1. Сумма (разность) конечного числа бесконечно малых функций при x\rightarrow a есть бесконечно малая функция при x\rightarrow a
  2. Доказательство
    Пусть f_{1}(x),f_{2}(x),..,f_{n}(x) бесконечно малые функции при x\rightarrow a. Тогда существуют числа \delta _{1},\delta _{2},..,\delta _{n} и число \varepsilon >0 такие что
    |x-a|<\delta _{1},|x-a|<\delta _{2},..,|x-a|<\delta _{n} (1)
    что влечет за собой условия
    |f_{1}(x)|<\frac{\varepsilon }{n},|f_{2}(x)|<\frac{\varepsilon }{n},..,|f_{n}(x)|<\frac{\varepsilon }{n} (2).
    Если \delta =\min\begin{Bmatrix}\delta _{1};\delta _{2};..;\delta _{n}\end{Bmatrix}, то условие |x-a|<\delta усиливает группу условий (1) что влечет за собой группу условий (2). Следовательно
    \\|f_{1}(x)+f_{2}(x)+..+f_{n}(x)|\leqslant |f_{1}(x)|+|f_{2}(x)|+..+|f_{n}(x)|\\|f_{1}(x)|+|f_{2}(x)|+..+|f_{n}(x)|<\sum_{1}^{n}\frac{\varepsilon }{n}=\varepsilon\\|f_{1}(x)+f_{2}(x)+..+f_{n}(x)|<\varepsilon

  3. Произведение бесконечно малой функции f(x) на ограниченную g(x) в некоторой проколотой окрестности точки a есть бесконечно малая функция при x\rightarrow a
  4. Доказательство
    Так как функция g(x) ограничена, то для x удовлетворяющих условию
    |x-a|<\delta _{1} (1)
    существует число
    C:|g(x)|<C (2)
    Так как функция f(x) бесконечно малая, то существует некоторая окрестность \delta _{2} и число
    \varepsilon >0 для которых выполняются условия
    |x-a|<\delta _{2} (3)
    и
    |f(x)|<\frac{\varepsilon}{C} (4)
    Выберем \delta=\min\begin{Bmatrix}\delta _{1};\delta _{2}\end{Bmatrix}. Тогда условие |x-a|<\delta более сильное чем (1) и (3) и поэтому оно влечет за собой условия (2) и (4).
    Следовательно |f(x)g(x)|=|f(x)||g(x)|<\frac{\varepsilon }{C}C =\varepsilon

  5. Произведение конечного числа бесконечно малых функций при x\rightarrow a есть бесконечно малая функция при x\rightarrow a
  6. Доказательство
    Так как любая бесконечно малая функция f(x) при x\rightarrow a будет ограничена в некоторой \delta окрестности точки a, то доказательство сводится к доказательству свойства 2.

Литература

  1. Тер-Киркоров А.М., Шабунин М.И., Курс математического анализа, физмат-лит, 2001. стр. 83

Следующая тема →

Свойства границ, связанные с арифметическими операциями и с неравенствами

Свойства пределов, связанные с алгебраическими операциями

Если функции f(x) и g(x) имеют конечные пределы в точке a, причем \lim_{x\rightarrow a}f(x)=A и \lim_{x\rightarrow a}g(x)=B то:

  1. \lim_{x\rightarrow a}(f(x)+g(x))=A+B
  2. Доказательство
    Так как функции f(x) и g(x) имеют предел в точке a, то при x\rightarrow a величины h_{f}(x)=A-f(x) и h_{g}(x)=B-g(x) будут бесконечно малыми. Отсюда, согласно свойствам бесконечно малых h_{f}+h_{g}=(A+B)-(f(x)+g(x)) также будет бесконечно малой величиной. Что в свою очередь означает, что \lim_{x\rightarrow a}(f(x)+g(x))=A+B

  3. \lim_{x\rightarrow a}(f(x)g(x))=AB
  4. Доказательство
    Так как функции f(x) и g(x) имеют предел в точке a, то при x\rightarrow a величины h_{f}(x)=A-f(x) и h_{g}(x)=B-g(x) будут бесконечно малыми. Поэтому g(x)=A-h_{f}(x) и g(x)=B-h_{g}(x). Отсюда
    \\f(x)g(x)=(A-h_{f})(B-h_{g})\\f(x)g(x)=AB-Ah_{g}-Bh_{f}+h_{f}h_{g}\\AB-f(x)g(x)=Ah_{g}+Bh_{f}-h_{f}h_{g}
    Согласно свойствам бесконечно малых, величина в правой части — бесконечно малая. Что в свою очередь означает, что \lim_{x\rightarrow a}(f(x)g(x))=AB

  5. \lim_{x\rightarrow a}(\frac{f(x)}{g(x)})=\frac{A}{B}, причем B\neq 0
  6. Доказательство
    Условие \lim_{x\rightarrow a}(\frac{f(x)}{g(x)})=\frac{A}{B} эквивалентно тому, что разность \frac{A}{B}-\frac{f(x)}{g(x)}
    бесконечно малая величина при x\rightarrow a. Покажем, что это утверждение имеет место. Приведем к общему знаменателю, получим \frac{Ag(x)-Bf(x)}{Bg(x)}. Рассмотрим предел числителя дроби.
    \\\lim_{x\rightarrow a}(Ag(x)-Bf(x))\\A\lim_{x\rightarrow a}g(x)-B\lim_{x\rightarrow a}f(x)\\AB-BA=0\: \Rightarrow \frac{A}{B}-\frac{f(x)}{g(x)}=0
    Что в свою очередь означает, что \lim_{x\rightarrow a}(\frac{f(x)}{g(x)})=\frac{A}{B}

Свойства пределов, связанные с неравенствами

  1. Теорема о двух милиционерах
  2. Если \exists \delta > 0:\forall x\in \dot{U}_{\delta }(a) выполняются неравенства g(x)\leqslant f(x)\leqslant h(x) и если \lim_{x\rightarrow a}g(x)= \lim_{x\rightarrow a}h(x)=A то \exists \lim_{x\rightarrow a}f(x)=A.
    Доказательство
    Воспользуемся определением предела по Гейне. Пусть \begin{Bmatrix}x_{n}\end{Bmatrix} — последовательность из \dot{U}_{\delta }(a), причем \lim_{x\rightarrow \infty }x_{n}=a. Тогда выполняются условия g(x_{n})\leqslant f(x_{n})\leqslant h(x_{n}) и \lim_{n\rightarrow \infty}g(x_{n})= \lim_{n\rightarrow \infty}h(x_{n})=A. Тогда в силу свойств пределов последовательностей \lim _{n\rightarrow \infty }f(x_{n})=A. Следовательно \lim _{x\rightarrow a }f(x)=A.
    Теорему можно проиллюстрировать следующим графиком:
    t3pol

  3. Если \exists\delta >0:\forall x\in \dot{U}_{\delta }(a) выполняется неравенство f(x)\leqslant g(x) и если\lim_{x\rightarrow  a}f(x)=A, \lim_{x\rightarrow  a}g(x)=B, то A\leqslant B.
  4. Доказательство
    Воспользуемся определением предела по Гейне. Пусть \begin{Bmatrix}x_{n}\end{Bmatrix} — последовательность из \dot{U}_{\delta }(a), тогда числа A и B будут пределами последовательности \begin{Bmatrix}x_{n}\end{Bmatrix}_{1}^{\infty } т.е. \lim_{n\rightarrow \infty }f(x_{n})=A и \lim_{n\rightarrow \infty }g(x_{n})=B Тогда в силу свойств пределов последовательностей A\leqslant B.

Литература

  1. Тер-Киркоров А.М., Шабунин М.И., Курс математического анализа, физмат-лит, 2001. стр. 81-84

Следующая тема →