8.4 Объем тела вращения

Пусть на отрезке $\left[a,b\right]$ задана непрерывная неотрицательная функция $f$. Рассмотрим криволинейную трапецию, или подграфик функции $f$. Будем вращать эту трапецию вокруг оси $Ox$. Полученное тело вращения обозначим через $E$. Выведем формулу для его объема. Разобьем отрезок $\left[a,b\right]$ точками $a= x_0 < x_1 <\ldots < x_n = b$ и обозначим $m_i = \inf f(x), M_i = \sup f(x)$. В результате вращения получаем два прямых круговых цилиндра и один “цилиндр” с криволинейной образующей. Объемы меньшего и большего круговых цилиндров равны соответственно $\pi m_i^2\Delta x_i$ и $\pi M_i^2\Delta x_i$. Из круговых прямых цилиндров составим две области: одна из них имеет объем V=$\pi\sum\limits_{i=1}^{n-1}m_i^2\Delta x_i$ ,а другая $\overline{V}=\pi\sum\limits_{i=1}^{n-1}M_i^2\Delta x_i$ (Если у Вас возникли проблемы, то просмотрите этот материал Суммы Дарбу). Ясно, что наше тело вращения $E$ содержит в себе меньшее из этих кусочно цилиндрических тел и содержится в большем кусочно цилиндрическом теле. Таким образом, объем $V$ тела $E$ удовлетворяет неравенству V $\leq$ V $\leq$ $\overline{V}$. Понятно, что суммы V и $\overline{V}$ соответственно нижняя и верхняя суммы Дарбу для интеграла $\pi\int\limits^a_b f(x)^2\,dx.$, так что они обе стремятся к этому интегралу при стремлении к нулю диаметра разбиения.

Итак, мы получаем следующую формулу для нахождения объема тела вращения:

$$V=\pi\int\limits^a_b f(x)^2\,dx$$

Примеры решения задач

  • Пример 1.Найти объем тела вращения вокруг оси абсцисс ограниченного функциями $y=2x-x^2, o<x<2;$
    Решение

    Выполним чертеж:

    Объем тела вращения:

    $V=\pi\int\limits^a_b f(x)^2\,dx = \pi\int\limits^2_0 (2x-x^2)^2\,dx$ =
    =$\pi\int\limits^2_0 4x^2-4x^3+x^4\,dx = \pi (\frac{32}{3}-16 +\frac{32}{5}) =\frac{ 16\pi}{15}$

  • Пример 2.Вычислить объем тела, полученного при вращении вокруг оси абсцисс фигуры ограниченной линиями $y=2x+1$, $y=x+4$, $x=0$, $x=1$.
    Решение

    $$V=V_1 — V_2$$

    Найдем фигуру ограниченную сверху прямой $y=x+4$ :

    $$ V_1 = \pi\int\limits^1_0 (x+4)^2\,dx = \pi (\frac{x^3}{3}+4x^2 +16x)|_0^1 =\frac{61\pi}{3}$$

    Найдем фигуру ограниченную сверху прямой $y=2x+1$ :

    $$ V_2 = \pi\int\limits^1_0 (2x+1)^2\,dx = \pi (\frac{4x^3}{3}+2x^2 +x)|_0^1 =\frac{61\pi}{3} =\frac{13\pi}{3}$$
    $$ V = \frac{61\pi}{3} — \frac{13\pi}{3} = 16\pi$$

Объем тела вращения

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме.

См. также