8.4 Объем тела вращения

Пусть на отрезке $\left[a,b\right]$ задана непрерывная неотрицательная функция $f$. Рассмотрим криволинейную трапецию, или подграфик функции $f$. Будем вращать эту трапецию вокруг оси $Ox$. Полученное тело вращения обозначим через $E$. Выведем формулу для его объема. Разобьем отрезок $\left[a,b\right]$ точками $a= x_0 < x_1 <\ldots < x_n = b$ и обозначим $m_i = \inf f(x), M_i = \sup f(x)$. В результате вращения получаем два прямых круговых цилиндра и один “цилиндр” с криволинейной образующей. Объемы меньшего и большего круговых цилиндров равны соответственно $\pi m_i^2\Delta x_i$ и $\pi M_i^2\Delta x_i$. Из круговых прямых цилиндров составим две области: одна из них имеет объем V=$\pi\sum\limits_{i=1}^{n-1}m_i^2\Delta x_i$ ,а другая $\overline{V}=\pi\sum\limits_{i=1}^{n-1}M_i^2\Delta x_i$ (Если у Вас возникли проблемы, то просмотрите этот материал Суммы Дарбу). Ясно, что наше тело вращения $E$ содержит в себе меньшее из этих кусочно цилиндрических тел и содержится в большем кусочно цилиндрическом теле. Таким образом, объем $V$ тела $E$ удовлетворяет неравенству V $\leq$ V $\leq$ $\overline{V}$. Понятно, что суммы V и $\overline{V}$ соответственно нижняя и верхняя суммы Дарбу для интеграла $\pi\int\limits^a_b f(x)^2\,dx.$, так что они обе стремятся к этому интегралу при стремлении к нулю диаметра разбиения.

Итак, мы получаем следующую формулу для нахождения объема тела вращения:

$$V=\pi\int\limits^a_b f(x)^2\,dx$$

Примеры решения задач

  • Пример 1.Найти объем тела вращения вокруг оси абсцисс ограниченного функциями $y=2x-x^2, o<x<2;$
    Решение

    Выполним чертеж:

    Объем тела вращения:

    $V=\pi\int\limits^a_b f(x)^2\,dx = \pi\int\limits^2_0 (2x-x^2)^2\,dx$ =
    =$\pi\int\limits^2_0 4x^2-4x^3+x^4\,dx = \pi (\frac{32}{3}-16 +\frac{32}{5}) =\frac{ 16\pi}{15}$

  • Пример 2.Вычислить объем тела, полученного при вращении вокруг оси абсцисс фигуры ограниченной линиями $y=2x+1$, $y=x+4$, $x=0$, $x=1$.
    Решение

    $$V=V_1 — V_2$$

    Найдем фигуру ограниченную сверху прямой $y=x+4$ :

    $$ V_1 = \pi\int\limits^1_0 (x+4)^2\,dx = \pi (\frac{x^3}{3}+4x^2 +16x)|_0^1 =\frac{61\pi}{3}$$

    Найдем фигуру ограниченную сверху прямой $y=2x+1$ :

    $$ V_2 = \pi\int\limits^1_0 (2x+1)^2\,dx = \pi (\frac{4x^3}{3}+2x^2 +x)|_0^1 =\frac{61\pi}{3} =\frac{13\pi}{3}$$
    $$ V = \frac{61\pi}{3} — \frac{13\pi}{3} = 16\pi$$

Объем тела вращения

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме.

См. также

Задача о 19-граннике

Задача из журнала «Квант» (1970, №7)

Условие

Около сферы радиуса $10$ описан некоторый $19$-гранник. Доказать, что на его поверхности найдутся две точки, расстояние между которыми больше $21$.

kvantTasc

Решение

Первое решение

Предположим противное, то есть, что расстояние между любыми двумя точками поверхности нашего $19$-гранника не больше $21$. Тогда этот многогранник лежит внутри сферы радиуса $11$, концентричной сфере радиуса $10$, а каждая его грань лежит между сферами. Поэтому площадь каждой грани не слишком велика, а именно, не превосходит площади круга, радиус которого равен $\sqrt{21}$. В нашем многограннике $19$ граней, поэтому площадь $S$ его поверхности не превосходит $19\cdot(\pi\cdot(\sqrt{21})^2) = \pi(20^2 -1^2)=399\pi$. Но многогранник описан около сферы радиуса $10$. Отсюда площадь его поверхности больше площади поверхности этой сферы $4\pi10^2$*. Итак, с одной стороны, $ S > 399\pi$, с другой стороны, $ S < 400\pi$. Полученное противоречие и решает задачу.

В этом (нестрогом) решении мы пропустили доказательства трёх утверждений, которые начинаются с трёх выделенных выше курсивом слов: тогда, поэтому, отсюда. Мы оставляем читателю эти простые доказательства, но хотим предупредить, что хотя третье утверждение легко доказывается для выпуклого многогранника с помощью сравнения его объёма с объёмом сферы**, тем не менее интуитивно ясное и правильное утверждение о том, что наш многогранник выпуклый, трудно доказать строго, так как само строгое определение многогранника весьма сложно. (Загляните, например, в книгу И. Лакатоса «Доказательства и опровержения» М., «Наука», 1967).

Второе решение

Поставим более общий вопрос: какое наименьшее число граней может иметь многогранник, описанный около сферы радиуса $r$ и целиком лежащий в концентрической с ней сфере радиуса $R > r$. (Вот житейская ситуация, которая подсказала автору эту задачу: каким наименьшим числом прямолинейных взмахов ножа можно срезать верхний слой кожуры апельсина, не срезав при этом ни одного куска сердцевины? Очевидно, что после срезания всего верхнего слоя кожуры остаток будет многогранником, так как на его поверхности не будет ни одного закругленного участка, так что этот вопрос эквивалентен предыдущему.)

Мы не знаем точного ответа на этот более общий вопрос, но докажем для числа граней некоторое неравенство, которое при $r = 10, R = 11$ показывает, что $N < 22$. Тем самым мы докажем, что если в условии задачи вместо $19$-гранника взять $22$-гранник, то утверждение задачи по-прежнему останется справедливым.

Итак, пусть $N$-гранник описан около сферы радиуса $r$ и целиком лежит внутри сферы радиуса $R$. Рассмотрим какую-нибудь его грань.

Проходящая через неё плоскость отрезает от сферы шапочку (сегментную поверхность) высоты $R — r$. Ясно, что если построить шапочки для всех граней нашего многогранника, то их объединение покроет всю внешнюю сферу. Каждая из $N$ шапочек есть сегментная поверхность высоты $R — r$, и, следовательно, имеет площадь $2\pi R(R — r)$. Сумма площадей всех шапочек больше площади сферы. Поэтому $N\cdot 2\pi R(R — r) > 4\pi R^2$, отсюда $N > {\frac{2R}{R-r}}$, в частности, при $R = 11, r = 10$ получаем $N > 22$.

Интересно, что по любому набору шапочек, целиком покрывающих внешнюю сферу, можно построить многогранник, описанный около внутренней сферы. (Докажите!) Поэтому наш вопрос про минимальное число граней полностью эквивалентен следующему вопросу. Каково минимальное число $N = N(h)$ шапочек высоты h, целиком покрывающих сферу радиуса $1$? (В исходной задаче $h = {\frac{1}{11}}$.)

Очевидно, что $N(h) > {\frac{2}{h}}$, но это неравенство отражает просто тот факт, что сумма площадей шапочек больше площади сферы, в то время как интуитивно ясно, что при $h > 1$ шапочки должны довольно сильно перекрываться. И действительно, можно доказать, что при достаточно малых $h$

$ N(h) > 1,2\frac{2}{h}$.

Попробуйте сами доказать, например, что при $h < 1$

$N(h) > 1,001\frac{2}{h}$

А. Г. Кушниренко

* Напомним, что для шара радиуса $R$ объем равен $\frac{4}{3}\pi R^3$, площадь сегментной поверхности с высотой $h$ равна $2\pi Rh$ и, в частности, площадь сферы равна $4\pi R^2$

** Действительно, объем многоугольника равен $\frac{RS}{3}$, где $R$ — радиус вписанной сферы, а $S$ — площадь его поверхности.

Вычисление площадей и объемов

Задача 1

Пирамида $ ABCD$ задана координатами своих вершин: $ A(4,-1,~0)$, $ B(2,~3,~4)$, C(-1,~4,~1), $D(4,-3,~5) $. Найти:

  • объем пирамиды;
  • площадь грани ABC .


Решение показать

Задача 2

 

Найти объем пирамиды, у которой три грани принадлежат плоскостям XOY,~XOZ,~YOZ , четвертая проходит через плоскость P=4x+6y+3z-12=0 , и имеет вершину в точке O(0,~0,~0) .

Решение показать

Список использованной литературы:

О.Н.Цубербиллер «Задачи и упражнения по аналитической геометрии», Санкт-Петербург, 2003г., изд-во «Лань», стр.214