Неопределённый интеграл и его свойства

Пусть функция f определена на некотором промежутке. Совокупность всех ее первообразных на этом промежутке называется неопределённым интегралом от функции f и обозначается

$$\int f(x)dx$$.

Символ \int называется знаком интеграла, а f(x) —подынтегральной функцией.

Если F(x) —какая-либо первообразная функции f на рассматриваемом промежутке, то пишут

\int f(x)dx=F(x)+C,

где Cпроизвольная постоянная.

Нахождение неопределённого интеграла. от заданной функции называют интегрированием.

Следует отметить, что всякое равенство, в обеих частях которого стоят неопределённые интегралы, есть равенство между множествами.

Под знаком интеграла пишут не саму функцию f, а ее произведение на дифференциал. Это делается, например, для того, чтобы указать, по какой переменной ищется первообразная.

 

Пример 1 показать

Пример 2 показать

Пример 3 показать

см. Таблица основных интегралов

Свойства неопределённого интеграла

Все рассматриваемые в этом пункте функции определены на некотором фиксированном промежутке \bigtriangleup.

Свойство 1 показать

Свойство 2 показать

Свойство 3 показать

Свойство 4 показать

СЛЕДСТВИЕ -- линейность интеграла показать

Литература.

  1. Лысенко З.М., Конспект лекций по математическому анализу, 2012
  2. Зарубин В.С., интегральное исчисление функций одного переменного — М.: Изд-во МГТУ им. Н.Э. Баумана, 1999., Стр. 16
  3. Кудрявцев Л.Д., Курс Математического Анализа. — М.: Дрофа; 2003, Т.1. Стр. 454-455
  4. Кудрявцев Л.Д., Курс Математического Анализа. — М.: Дрофа; 2003, Т.1. Стр. 456-458
  5. В. И. Коляда, А. А. Кореновский. Курс лекций по математическому анализу. К93:в 2-х ч. Ч. 1. — Одесса: Астропринт, 2009. (стр. 158-159)

 Тест.

Неопределённый интеграл и его свойства

Неопределённый интеграл и его свойства

Таблица лучших: Неопределённый интеграл и его свойства

максимум из 15 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Теорема о разности двух первообразных

Дифференцируемые в промежутке \bigtriangleup функции F(x) и G(x) будут в этом промежутке первообразными одной и той же функции f(x) тогда и только тогда, когда разность их значений для любого x\in\bigtriangleup постоянна.

F(x)-G(x)=C=const

Доказательство показать

Литература.

  1. Зарубин В.С., Интегральное исчисление функций одного переменного. — М.: Изд-во МГТУ им. Н.Э. Баумана, 1999., Стр. 15

Тест

Теорема о разнице двух первообразных

Таблица лучших: Теорема о разнице двух первообразных

максимум из 1 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Пример функции, не имеющей первообразной

Докажем, что функция

{\mathop{\rm sgn}} x = \left\{ \begin{array}{l}~~1,~~~x > 1\\~~0,~~~x = 0\\- 1,~~~x < 0\end{array} \right.

signum

имеет первообразную на любом промежутке, не содержащем точку 0, и не имеет первообразной на любом промежутке, содержащем точку 0.
Доказательство 1 показать

 

Доказательство 2 показать

Источники

  1. Пример
  2. Sgn

Тест

Пример функции, не имеющей первообразной

Пример функции, не имеющей первообразной

Таблица лучших: Пример функции, не имеющей первообразной

максимум из 1 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

 

Общий вид первообразной для непрерывной функции

Всякая первообразная F(x) для f(x), где f непрерывна на [a,b] , имеет вид
F(x)=\int\limits_{a}^{x}f(t)dt+C.

Общий вид первообразной для непрерывной функции является следствием из теоремы о существовании первообразной у непрерывной функции.

Литература
  • З.М. Лысенко. Конспект лекций по математическому анализу, 1 семестр.: О. 2012
  • В.А. Ильин, Э.Г. Позняк. Основы математического анализа. Часть 1. Издание четвертое.  М. Наука. — 1982, Стр. 341-342
  • Г.М. Фихтенгольц. Курс дифференциального и интегрального исчисления. Том 2. Издание седьмое.  М. Наука. — 1969, Стр. 115-117
Смотрите так же

Определение первообразной

Функция F называется первообразной функцией функции f на промежутке \bigtriangleup, если F дифференцируема на \bigtriangleup и в каждой точке этого промежутка производная функции F равна значению функции f:

F'(x)-f(x), x\in\bigtriangleup

При этом если некоторый конец промежутка \bigtriangleup принадлежит промежутку , то под производной в этом конце понимается соответствующая односторонняя производная. Функция, имеющая в данной точке производную , непрерывна в этой точке , поэтому первообразная F функции f непрерывна на промежутке \bigtriangleup.

Примеры

    1. Функция F(x)=\frac{x^3}{3} является первообразной функции f(x)=x^2 на всей числовой оси.
    2. f(x)=\frac{1}{7-3x}     F(x)=-\frac{1}{3}ln|7-3x|+C

Решите самостоятельно

f(x)=3x^2
Ответ показать

 

f(x)=\frac{1}{\sqrt{x}}, при x>0

Ответ показать

 

f(x)=-\frac{1}{x^2}, при x\ne0

Ответ показать

 

f(x)=cos(x)
Ответ показать

 

Ниже приведены графики функции f(x)=cos(x)(красный цвет) и ее первообразной F(x)=sin(x)(зеленый цвет) при значении произвольной постоянной C=0.

cos

Литература

  1. Лысенко З.М., Конспект лекций по математическому анализу, 2012
  2. Зарубин В.С., Интегральное исчисление функций одного переменного. — М.: Изд-во МГТУ им. Н.Э. Баумана,1999, Стр. 14
  3. Кудрявцев Л.Д., Курс Математического Анализа, 2003. — М.: Дрофа, Т.1. Стр. 453-454

Тест

Определение первообразной

Таблица лучших: Определение первообразной

максимум из 10 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных