Поле

Понятие поля:

Коммутативное кольцо P , в котором есть единичный элемент и каждый ненулевой элемент имеет обратный, называется полем.

Так как любое поле является кольцом, следовательно операции сложения и умножения являются бинарными алгебраическими операциями, им присущи данные свойства:

  1. Всюду определенность;
  2. Однозначность;
  3. Замкнутость;

we

Rew

Также эти операции из-за того что это поле будут иметь следующие свойства:

  1. Для любых ab, c относительно операции + выполняются следующие свойства:
    • сложение коммутативно, a+b=b+a,
    • сложение ассоциативно, a+(b+c)=(a+b)+c,
    • существует единственный нулевой элемент 0 такой, что a+0=a для любого элемента a,
    • для каждого элемента a существует единственный противоположный элемент — a такой, что a+(-a)=0.
  2. Для любых a, b, c относительно операции * выполняются следующие свойства:
    • умножение коммутативно, ab=ba,
    • умножение ассоциативно, a(bc)=(ab)c,
    • существует единственный единичный элемент 1 такой, что a\times 1=1\times a=a для любого элемента a,
    • для каждого ненулевого элемента a существует единственный обратный элемент a^{-1} такой, что aa^{-1}=a^{-1}a=1.
  3. Операции сложения и умножения связаны между собой следующим соотношением: умножение дистрибутивно относительно сложения, (a+b)c=ac+bc.

Примеры полей:

  1. Рациональные числа;
  2. Вещественные числа;
  3. Комплексные числа;
  4. Поле вычетов по модулю p, p простое число;

Список использованной литературы:

  1. Воеводин, В.В. Линейная алгебра : Наука. Главная редакция физико-математической литературы, 1974, ст. 28-29.
  2. Конспект лекций Белозерова Г.С.

Поле

Данный тест предназначен для проверки знаний по данной теме.

Построение поля комплексных чисел

Краткая историческая справка показать

Определение комплексного числа показать
Расширение числовых множества Необходимость в комплексных числах появилась, когда стало понятно, что не каждый многочлен имеет вещественные корни. Например, уравнение x^2+1=0 не имеет корней среди вещественных чисел, так как еще в школе учили, что извлечь квадратный корень из отрицательного числа невозможно.

Для построения поля комплексных чисел — расширения множества вещественных, в котором уравнение разрешимо, — необходимо доказать следующее:

  1. \mathbb{C} — поле;
  2. \mathbb{R} \subset \mathbb{C} ;
  3. x^2+1=0 — разрешимо в \mathbb{C} (1);
  4. \mathbb{C} минимально по включениям.
(\mathbb{C},+,\cdot) - поле показать

\mathbb{R} \subset \mathbb{C} показать

x^2+1=0 - разрешимо в \mathbb{C} показать

Минимальность показать

Список источников:

Тест на знание теории о построении поля комплексных чисел.

Простейшие задачи на определение структур группы, кольца, поля.

Группа

Множество G с бинарной алгебраической операцией \ast называется группой, если выполняются следующие условия:

  1. Операция \ast в G ассоциативна: a\ast (b\ast c)=(a\ast b)\ast c \forall a,b,c\in G;
  2. В G существует нейтральный элемент \theta :a\ast\theta=\theta\ast a=a \forall a\in G;
  3. Для каждого элемента a\in G существует обратный ему элемент a^{-1}\in G: a\ast a^{-1}=a^{-1}\ast a=\theta .

Если операция коммутативна, то группа называется коммутативной, или абелевой. В противном случае группа называется некоммутативной.

Задача

Доказать, что множество рациональных чисел R является абелевой группой относительно операции сложения.

... показать

Кольцо

Множество K , на котором заданы две операции — сложение (+) и умножение \cdot, называется кольцом, если выполняются следующие условия:

  1. Относительно операции сложения множество K — коммутативная группа, т.е:
    1. Операция сложения коммутативна: a+b=b+a \forall a,b\in K;
    2. Операция сложения ассоциативна: a+(b+c)=(a+b)+c \forall a,b,c\in K;
    3. Существует нулевой элемент \theta: a+\theta =\theta +a=a \forall a\in K;
    4. для каждого элемента существует противоположный ему элемент (-a)\in K: a+(-a)=(-a)+a=\theta;
  2. Операция умножения в множестве K ассоциативна:
    a\cdot (b\cdot c)=(a\cdot b)\cdot c  \forall a,b,c\in K
  3. Операции сложения и умножения связаны законами дистрибутивности:
    (a+b)\cdot c=a\cdot c+b\cdot c  c\cdot (a+b)=c\cdot a+c\cdot b  \forall a,b,c\in K

Если операция умножения коммутативна:a\cdot b=b\cdot a, то кольцо называется коммутативным, в противном случае кольцо называется некоммутативным. Если для операции умножения существует единичный элемент e: a\cdot e=e\cdot a=a, то говорят, что кольцо — есть кольцо с единицей.

Задача

Проверить яляется ли кольцом множество комплексных чисел.

... показать

Поле

Полем называется кольцо P, обладающее следующими свойствами:
1. Обратимость умножения. \forall a,b\in P, где a\neq 0, уравнение ax = b имеет (по крайней мере одно) решение, т. е. существует элемент такой, что aq = b.

2. P содержит по крайней мере один элемент, отличный от нуля.

Источники

Структуры и подструктуры

Тест на тему «Простейшие задачи на определение структур группы, кольца, поля. Подструктуры.Циклическая группа. Симметрическая группа.». Прочтите все четыре статьи, прежде чем проходить тест.

Таблица лучших: Структуры и подструктуры

максимум из 7 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных