М1768. Аэробус

Задача из журнала «Квант» (2001 год, 5 выпуск)

Условие

а) Расположите первые [latex]100[/latex] натуральных чисел в таком порядке, чтобы для любых нескольких (но не всех) из этих чисел сумма номеров занятых ими мест не равнялась сумме самих этих чисел.

б*) При посадке в аэробус пассажиры сели куда попало. В итоге все места оказались заняты, а для любого множества, в котором не более [latex]100[/latex] пассажиров, среднее арифметическое номеров занятых ими мест не менее чем на [latex]1[/latex] отличается от среднего арифметического номеров мест, указанных в билетах. Каково наименьшее возможное число мест в таком аэробусе?

Решение

а) Укажем два способа: [latex]100, 1, 2, \ldots, 97, 98, 99[/latex] и [latex]2, 3,4, \ldots, 99, 100, 1[/latex]. Каждый из них дает требуемое расположение чисел, в чем легко непосредственно убедиться.

б) Ответ: [latex]301[/latex] место.
Каждый пассажир включен в один из циклов вида [latex]P_{1}, P_{2}, \ldots , P_{m}[/latex], где [latex]P_{1}, P_{2}, \ldots , P_{m}[/latex] – некоторые пассажиры, причем [latex]P_{i}[/latex]-й пассажир ([latex]i =  1, 2, \ldots , m — 1[/latex]) имеет билет на место, которое занимает [latex]P_{i+1}[/latex]-й пассажир, а [latex]P_{m}[/latex]-й пассажир – на место, которое занимает [latex]P_{1}[/latex]-й пассажир. Если в таком цикле [latex]100[/latex] пассажиров или менее, то все они могли составить одну рассматриваемую группу, для которой среднее арифметическое номеров занимаемых ими мест равно среднему арифметическому номеров мест, указанных в их билетах, что противоречит условию. Поэтому [latex]m \geq 101 + r \geq 202[/latex]. Значит, если число циклов не меньше [latex]3[/latex], то в аэробусе размещаются [latex]303[/latex] или более пассажиров. Заметим далее, что если [latex]P_{k}, P_{k+1}, \ldots , P_{k+r} [/latex]– цепочка пассажиров, последовательно включенных в некоторый цикл, причем номера билетов [latex]P_{k}[/latex]-го и [latex]P_{k+r}[/latex]-го отличаются на [latex]1[/latex], то [latex]r \geq 101[/latex]. Рассматривая цепочку [latex]P_{k+r}, P_{k+r+1} , \ldots , P_{m}, P_{1}, \ldots , P_{k}[/latex], получим неравенство [latex]m — (k + r) + k \geq 101[/latex]. Следовательно, [latex]m \geq 101 + r \geq 202[/latex] , и поэтому число мест в аэробусе может быть меньшим, чем [latex]303[/latex], только если выполняется одно из следующих условий:

  1. Все пассажиры включены в один цикл;
  2. Число циклов равно [latex]2[/latex], причем любые два билета на соседние (по номерам) места принадлежат пассажирам из разных циклов.

Пусть выполнено первое условие. Рассмотрим пассажиров [latex]A_{n}, A_{n+1}[/latex] и [latex]A_{n+2}[/latex] с билетами на [latex]n[/latex]-е, [latex](n + 1)[/latex]-е и [latex](n + 2)[/latex]-е места соответственно. Между [latex]A_{n}[/latex]-м и [latex]A_{n+1}[/latex]-м пассажирами в кратчайшей из цепочек, их соединяющих, имеется не менее [latex]100[/latex] пассажиров, между [latex]A_{n+1}[/latex]-м и [latex]A_{n+2}[/latex]-м также не менее [latex]100[/latex] пассажиров, а между [latex]A_{n+2}[/latex]-м и [latex]A_{n}[/latex]-м либо нет ни одного пассажира, либо имеется не менее [latex]100[/latex]. Значит, если общее число мест меньше [latex]303[/latex], то либо [latex]A_{n}[/latex] сидит на [latex](n + 2)[/latex]-м месте, либо [latex]A_{n+2}[/latex] сидит на [latex]n[/latex]-м месте. Ввиду произвольности номера [latex]n[/latex] имеем (с точностью до направления) цикл [latex]A_{1} A_{3} A_{5} \ldots A_{N}A_{2}A_{4} \ldots A_{N’}[/latex], где [latex]N[/latex] и [latex]N'[/latex] – наибольший нечетный и наибольший четный номера соответственно, а [latex]A_{i}[/latex]–пассажир, занимающий [latex]i[/latex]-е место, [latex]i = 1, 2, \ldots, max ( N, N’)[/latex].Пассажиры, сидящие на местах [latex]N, 2, 4, \ldots , 198[/latex], имеют билеты на места [latex]2, 4, 6, \ldots , 200[/latex], а разность соответствующих средних равна [latex](N — 200) : 100[/latex]. Так как эта разность больше [latex]1[/latex], получаем [latex]N \geq 301[/latex]. Нетрудно убедиться, что цикл [latex] A_{1}A_{3}A_{5} \ldots A_{301}A_{2}A_{4} \ldots A_{300}[/latex] удовлетворяет условиям задачи. Пусть теперь выполнено второе условие, т.е. имеются два цикла, каждый из которых включает всех пассажиров с билетами на места одной четности. Если в каком-нибудь из этих циклов пассажир [latex]A_{n}[/latex] сидит не на [latex](n + 2)[/latex]-м месте, а [latex]A_{n+2}[/latex]– не на [latex]n[/latex]-м месте, то в цикле не менее [latex]202[/latex] пассажиров, а в аэробусе – не менее [latex]403[/latex] мест. В противном же случае имеем (с точностью до направления) цикл [latex]A_{1}A_{3}A_{5} \ldots A_{N}[/latex] , где пассажиры с билетами на места [latex]1,3, 5, \ldots , 199[/latex] сидят на местах [latex]N, 1, 3, \ldots , 197[/latex]; разность соответствующих средних арифметических [latex] (N — 199) :100[/latex] больше [latex]1[/latex], откуда [latex]N \geq 301[/latex].

С.Токарев

М1719. Последовательность

Задача из журнала «Квант» (2000 год, 1 выпуск)

Условие

Последовательность $a_{1}$, $a_{2}$, $a_{3}$, $\ldots$ задана своим первым членом $a_{1} = 1$ и рекуррентной формулой $\displaystyle a_{n+1} = a_{n} + \frac{1}{a_{n}}$, где $n = 1, 2, 3, \ldots$

  1. Докажите, что $a_{100} > 14$.
  2. Найдите $\lbrack a_{1000}\rbrack$, то есть укажите такое целое число $m$, для которого $m \leqslant a_{1000} < m + 1$.
  3. Докажите существование и найдите значение предела $\displaystyle\lim\limits_{n \to \infty} \frac{a_{n}}{\sqrt{n}}$.

Решение

  1. Возводим равенство $\displaystyle a_{n+1} = a_{n} + \frac{1}{a_{n}}$ в квадрат и «отбрасываем лишнее»: $$a_{n+1}^{2} = a_{n}^{2} + 2 + \frac{1}{a_{n}^{2}} > {a_{n}^{2}} + 2.$$ Вспомнив, что $a_{1}^{2} = 1$, получаем одно за другим неравенства $a_{2}^{2} > a_{1}^{2} + 2 = 3$, $a_{3}^{2} > a_{2}^{2} + 2 > 3 + 2 = 5$, и вообще (при $n > 1$), $$\begin{equation}\label{m1719_first} a_{n}^{2} > 2n — 1\end{equation}.$$ В частности, $a_{100}^{2} > 199 > 196 > 14^{2}$, что и требовалось.
  2. Ответ: $\lbrack a_{1000}\rbrack = 44$.

    При $n = 1000$ неравенство $\eqref{m1719_first}$ дает $a_{1000}^{2} > 1999 > 44^{2}$, так что $\lbrack a_{1000}\rbrack \geqslant 44$. Чтобы получить оценку сверху, введем величины $b_{n}$, такие что $a_{n}^{2} = 2n — 1 + b_{n}$. В силу неравенства $\eqref{m1719_first}$, имеем $b_{n} > 0$ при $n > 1$. Далее, запишем формулу $\displaystyle a_{n+1}^{2} = a_{n}^{2} + 2 + \frac{1}{a_{n}^{2}}$ в виде
    $$2n + 1 + b_{n+1} = 2n — 1 + b_{n} + 2 + \frac{1}{2n — 1 + b_{n}},$$
    откуда
    $$b_{n+1} = b_{n} + \frac{1}{2n — 1 + b_{n}} \leqslant b_{n} + \frac{1}{2n — 1}.$$

    По индукции из последнего неравенства следует, что
    $$b_{n+1} \leqslant b_{1} + \frac{1}{1} + \frac{1}{3} + \ldots + \frac{1}{2n — 3} + \frac{1}{2n — 1}. $$
    Поскольку $b_{1} = 0$, имеем, в частности,
    $$b_{1000} \leqslant 1 + \frac{1}{3} + \frac{1}{5} + \ldots + \frac{1}{1995} + \frac{1}{1997}.$$
    Осталось оценить сумму, оказавшуюся в правой части последнего неравенства. Сгруппируем слагаемые:
    $$b_{1000} \leqslant 1 + \left(\frac{1}{3} + \frac{1}{5} + \frac{1}{7}\right) + \left(\frac{1}{9} + \frac{1}{11} + \frac{1}{13} + \frac{1}{15} + \ldots + \frac{1}{25}\right) + \\ + \left(\frac{1}{27} + \frac{1}{29} + \frac{1}{31} + \frac{1}{33} + \ldots + \frac{1}{79}\right) + \left(\frac{1}{81} + \frac{1}{83} + \ldots + \frac{1}{241}\right) + \\ + \left(\frac{1}{243} + \frac{1}{245} + \ldots + \frac{1}{727}\right) + \left(\frac{1}{729} + \frac{1}{731} + \ldots + \frac{1}{1997}\right).$$
    (Принцип очень простой: в первой скобке три слагаемых, наибольшее из которых равно $\displaystyle\frac{1}{3}$; во второй — девять, наибольшее из которых $\displaystyle\frac{1}{9}$; …; в пятой — $243$ слагаемых, наибольшее $\displaystyle\frac{1}{243}$; наконец, в шестой скобке наибольшее слагаемое равно $\displaystyle\frac{1}{729}$, а слагаемых всего лишь $635$.) Следовательно, $b_{1000} < 7$. Это позволяет утверждать, что $$a_{1000}^{2} < 2000 - 1 + 7 < 2025 = 45^2,$$ откуда $a_{1000} < 45$.

  3. Использованный при решении пункта б) прием позволяет доказать, что $\displaystyle\lim\limits_{n\to \infty}\frac{b_{n}}{n} = 0.$ Поскольку $a_{n} = \sqrt{2n — 1 + b_{n}}$, получаем ответ:
    $$\displaystyle\lim_{n \to \infty} \frac{a_{n}}{\sqrt{n}} = \sqrt{2}.$$

А. Спивак

Суммируемостью рядов Фурье методом Фейера

Ядро Фейера

Зададим непрерывную и $2\pi$-периодическую функцию $f(x)$. Рассмотрим последовательность $S_n(x)$ частичных сумм ряда Фурье функции $f(x)$, где $$S_n(x) = \dfrac{1}{\pi} \int \limits_{-\pi}^\pi f(x + t) \cdot D_n(t)dt,(1)$$ а $D_n(t)$ — ядро Дирихле: $$D_n(t) = \dfrac{1}{2} + \cos t + \ldots + \cos nt = \dfrac{\sin(n + \frac{1}{2})t}{2 \cdot \sin \frac{t}{2}}.(2)$$ Определим суммы Фейера как средние арифметические сумм $S_0(x), S_1(x),\ldots, S_n(x)$: $$\sigma_n(x) = \dfrac{S_0(x) + \ldots + S_n(x)}{n+1}.(3)$$

Подставляя в данную формулу выражение для частичной суммы ряда Фурье через ядро Дирихле, получаем, что $$\sigma_n(x) = \dfrac{1}{\pi} \int \limits_{-\pi}^\pi f(x + t) \dfrac{D_0(t) + \ldots + D_n(t)}{n + 1} dt.$$ Обозначим $$F_n(t) = \dfrac{D_0(t) + \ldots + D_n(t)}{n + 1},(4)$$ тогда $$\sigma_n(x) = \dfrac{1}{\pi} \int \limits_{-\pi}^\pi f(x + t) F_n(t) dt.(5)$$

Функцию $F_n(t)$ назовём ядром Фейера. Приведём следующие свойства ядра Фейера:

  1. $F_n(t)$ — четная, $2\pi$-периодическая и непрерывная функция;
  2. $\dfrac{1}{\pi} \int \limits_{-\pi}^\pi F_n(t)dt = 1$;
  3. $F_n(t) \ge 0$;
  4. $\lim \limits_{n\to\infty} \max \limits_{\delta \le t \le \pi} F_n(t) = 0$ при любом $\delta \in (0, \pi)$.
  5. Доказательство

    Свойства 1) и 2) сразу следуют из формулы (4) и соответствующих свойств ядер Дирихле.

    Докажем свойство 3). Подставляя в формулу (4) для ядра Фейера выражение (2) для ядер Дирихле, получаем $$(n + 1) \cdot F_n(t) = D_0(t) + \ldots + D_n(t) = \sum_{k=0}^{n}\dfrac{\sin(k + \frac{1}{2})x}{2\sin \frac{x}{2}} =$$ $$=\dfrac{1}{4\sin^2 \frac{x}{2}}\sum_{k=0}^{n}2 \cdot \sin \frac{x}{2} \cdot \sin(k + \frac{1}{2})x = \dfrac{1 — \cos(n + 1)x}{4\sin^2 \frac{x}{2}} \ge 0. (6)$$

    Докажем свойство 4). Из равенства (6) следует, что $\sup \limits_{x \in [\delta, \pi]} F_n(x) \le \dfrac{2}{4\cdot \sin^2 \frac{\delta}{2}} \cdot \dfrac{1}{n + 1} \rightarrow 0$ при $n \rightarrow \infty$, $0 < \delta < \pi$.

    Теорема (Фейера).

    Последовательность $\{\sigma_n(x)\}$ сумм Фейера $2\pi$-периодической непрерывной функции $f(x)$ равномерно сходится к функции $f(x)$.

    Доказательство.

    Докажем равномерную непрерывность $f(x)$ на $\mathbb{R}$.

    Спойлер

    По теореме Кантора функция $f(x)$ равномерно непрерывна на отрезке $[-2\pi, 2\pi]$. Поэтому для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что для любых $x, t \in [-2\pi, 2\pi]$ таких, что $\left| x — t \right| < \delta$, выполнено неравенство $\left| f(x) — f(t) \right| < \varepsilon$.

    Пусть $\xi$ и $\eta$ – произвольные числа такие, что $\left| \xi — \eta \right| < \delta < \pi$. Тогда для любого $\xi \in \mathbb{R}$ надётся целое число $k$ такое, что $\xi — 2k\pi = x \in [-\pi, \pi]$. Так как по условию $\left| \xi — \eta \right| < \delta < \pi$, то $t = \eta — 2k\pi \in [-2\pi, 2\pi]$, и поэтому $\left| f(\xi) — f(\eta) \right| = \left| f(\xi — 2k \pi) — f(\eta — 2k \pi) \right| = \left| f(x) — f(t) \right| < \varepsilon$, что доказывает равномерную непрерывность функции $f(x)$ на $\mathbb{R}$.

    [свернуть]

    Используя свойства 2) и 3) ядра Фейера, оценим разность $\sigma(x) — f(x)$. Получаем, что $\sigma(x) — f(x) = \dfrac{1}{\pi} \int \limits_{-\pi}^\pi (f(x + t) — f(x)) F_n(t)dt$, $$\left| \sigma(x) — f(x) \right| \le \dfrac{1}{\pi} \int \limits_{-\pi}^\pi \left| f(x + t) — f(x) \right| F_n(t)dt. (7)$$

    Зафиксируем $\varepsilon > 0$. Воспользуемся равномерной непрерывностью функции $f(x)$ на $\mathbb{R}$ и найдём $\delta > 0$ такое, что $\forall x \in \mathbb{R}$ и $\forall \left| t \right| < \delta$ выполнено равенство $\left| f(x + t) — f(x) \right| < \dfrac{\varepsilon}{2}$.

    Разобьём отрезок интегрирования $[-\pi, \pi]$ в формуле (7) на три отрезка: $[-\pi, -\delta], [-\delta, \delta]$ и $[\delta, \pi]$.

    Воспользовавшись свойствами 2) и 3) ядра Фейера, получаем, что $$\dfrac{1}{\pi} \int \limits^{\delta}_{-\delta} \left| f(x + t) — f(x) \right| F_n(t) dt \le \dfrac{1}{\pi} \int \limits^{\delta}_{-\delta} \dfrac{\varepsilon}{2} F_n(t) dt \le$$ $$\le \dfrac{\varepsilon}{2\pi} \int \limits^{\delta}_{-\delta} F_n(t)dt = \dfrac{\varepsilon}{2}. (8)$$

    Из непрерывности на $\mathbb{R}$ $2\pi$-периодичной функции $f(x)$ следует её ограниченность на $\mathbb{R}$. Пусть $\left| f(x) \right| < M$. Воспользуемся свойством 4) ядра Фейера и найдём такое $N$, что $\forall n > N$ выполнено неравенство $$\max \limits_{t \in [\delta, \pi]} F_n(t) < \frac{\varepsilon}{8M}.$$

    Тогда $\forall n > N$ справедливо неравенство $$\dfrac{1}{\pi} \int \limits^{\pi}_{\delta} \left| f(x + t) — f(x) \right| F_n(t)dt \le \dfrac{1}{\pi} \int \limits^{\pi}_{\delta} (\left| f(x + t) \right| + \left| f(x) \right|) F_n(t)dt \le$$ $$\le \dfrac{2M}{\pi} (\pi — \delta) \max \limits_{t \in [\delta, \pi]} F_n(t) < 2M \dfrac{\varepsilon}{8M} = \dfrac{\varepsilon}{4}. (9)$$

    Аналогично для всех $n > N$: $$\dfrac{1}{\pi} \int \limits^{-\delta}_{-\pi} \left| f(x + t) — f(x) \right| F_n(t)dt < \dfrac{\varepsilon}{4}. (10)$$

    Следовательно, для любого $x \in \mathbb{R}$ и для всех $n > N$ выполнено неравенство $\left| \sigma_n(x) — f(x) \right| < \varepsilon$ (из неравенств (7) — (10)), которое означает, что последовательность сумм Фейера $\sigma_n(x)$ равномерно сходится на $\mathbb{R}$ к функции $f(x)$.

    Спойлер

    Задан ряд $1 — 1 + 1 — 1 + \ldots$. Данный ряд расходится, но суммируется в смысле Фейера. Найдём его частичные суммы $S_{2n} = 0$, $S_{2n-1} = 1$ и средние суммы Фейера $\sigma_{2n} = \dfrac{1}{2}$, $\sigma_{2n-1} = \dfrac{n}{2n-1}$, $n = 1, 2, \ldots$. Следовательно, $\sigma_n \to \dfrac{1}{2}$.

    [свернуть]

    Литература

    Суммируемость рядов Фурье методом Фейера

    Тест по теме «Суммируемость рядов Фурье методом Фейера».

Равномерная сходимость и дифференцируемость

Теорема

Пусть [latex]\left \{ f_{n} \right \}[/latex] — последовательность непрерывно дифференцируемых на отрезке [latex]\left[a;b\right][/latex] функций. Предположим, что в некоторой точке [latex]x\in \left[a;b\right][/latex] числовая последовательность [latex]\left \{ f_{n}(x_{0}) \right \}[/latex] сходится, а функциональная последовательность [latex]\left \{ f’_{n} \right \}[/latex] равномерно сходится на [latex]\left[a;b\right][/latex]. Тогда исходная последовательность [latex]\left \{ f_{n} \right \}[/latex] равномерно сходится на [latex]\left[a;b\right][/latex] к непрерывно дифференцируемой функции [latex]f[/latex], причем для любого [latex]x\in \left[a;b\right][/latex] справедливо равенство [latex]f'(x)=\lim_{n\rightarrow \infty }f’_{n}(x)[/latex].

Доказательство

Спойлер

Обозначим [latex]\varphi (x)=\lim_{n\rightarrow \infty }f’_{n}(x)[/latex]. По теореме о непрерывности предела равномерно сходящейся последовательности непрерывных функций получаем, что функция [latex]\varphi[/latex] непрерывна на [latex]\left[a;b\right][/latex]. Положим [latex]g(x)=\int_{x_{0}}^{x}\varphi (t)dt[/latex]. Применим на отрезке с концами [latex]x_{0}[/latex] и [latex]x[/latex]теорему о предельном переходе под знаком интеграла к последовательности [latex]\left \{ f’_{n}(t) \right \}[/latex]. Тогда получим
[latex]g(x)=\int_{x_{0}}^{x}\varphi (t)dt=\lim_{n\rightarrow \infty }\int_{x_{0}}^{x}f’_{n}(t)dt=\lim_{n\rightarrow \infty }(f_{n}(x)-f_{n}(x_{0}))[/latex]
(последнее равенство справедливо в силу формулы Ньютона-Лейбница). По условию теоремы существует [latex]\lim_{n\rightarrow \infty }f_{n}(x_{0})[/latex]. Тогда из равенства [latex]g(x)=\lim_{n\rightarrow \infty }(f_{n}(x)-f_{n}(x_{0}))[/latex] следует, что существует и [latex]\lim_{n\rightarrow \infty }f_{n}(x)[/latex], т.е. мы показали, что последовательность [latex]\left \{ f_{n}(x) \right \}[/latex] сходится на [latex]\left[a;b\right][/latex]. Обозначим [latex]f(x)=\lim_{n\rightarrow \infty }f_{n}(x)[/latex] и получим, что [latex]g(x)=f(x)-f(x_{0})[/latex], а так как функция [latex]g[/latex] дифференцируема (как интеграл с переменным верхним пределом от непрерывной функции [latex]\varphi[/latex]) и [latex]g'(x)=\varphi (x)[/latex](в силу формулы Ньютона-Лейбница), то отсюда следует, что функция [latex]f[/latex] также дифференцируема и [latex]f'(x)=\varphi (x)[/latex], т.е. функция [latex]f[/latex] имеет производную, эта производная непрерывна и справедливо равенство [latex]f'(x)=\lim_{n\rightarrow \infty }f’_{n}(x)[/latex]. Осталось показать, что последовательность [latex]\left \{ f_{n} \right \}[/latex] сходится к функции [latex]f[/latex] равномерно на [latex]\left[a;b\right][/latex]. Имеем
[latex]\left | f_{n}(x)-f(x) \right |\leq \left | (f_{n}(x)-f_{n}(x_{0}))-(f(x)-f(x_{0})) \right |+\left | f_{n} (x_{0})-f(x_{0})\right |[/latex].
Второе слагаемое справа мало при достаточно больших [latex]n[/latex], а первое оцениваем так:
[latex]\left | \int_{x_{0}}^{x}f’_{n}(t)dt-\int_{x_{0}}^{x}\varphi (t)dt \right |=\left | \int_{x_{0}}^{x}(f’_{n}(t)-\varphi (t))dt \right |\leq \int_{a}^{b}\left | f’_{n}(t)-\varphi (t) \right |dt[/latex].
Теперь остается учесть, что последовательность [latex]\left \{ f’_{n} \right \}[/latex] сходится к функции [latex]\varphi[/latex] равномерно на [latex]\left[a;b\right][/latex], и тем самым завершается доказательство теоремы.

[свернуть]

Теорема (о почленном дифференцировании ряда)

Пусть на отрезке [latex]\left[a;b\right][/latex] задана последовательность непрерывно дифференцируемых функций [latex]\left \{ u_{n} \right \}[/latex], такая, что ряд [latex]\sum_{n=1}^{\infty }u_{n}(x)[/latex] сходится в некоторой точке [latex]x\in \left[a;b\right][/latex], а ряд из производных [latex]\sum_{n=1}^{\infty }u’_{n}(x)[/latex] сходится равномерно на [latex]\left[a;b\right][/latex]. Тогда исходный ряд [latex]\sum_{n=1}^{\infty }u_{n}(x)[/latex] равномерно сходится на всем отрезке [latex]\left[a;b\right][/latex], его сумма является непрерывно дифференцируемой функцией и справедливо равенство [latex]\left ( \sum_{n=1}^{\infty }u_{n}(x) \right )’=\sum_{n=1}^{\infty }u’_{n}(x)\; (x\in \left[a;b\right])[/latex].

Доказательство

Спойлер

Для доказательства этой теоремы достаточно применить предыдущую теорему к последовательности частичных сумм ряда [latex]\sum_{n=1}^{\infty }u_{n}(x)[/latex].

[свернуть]

Теорема

Пусть на отрезке [latex]\left[a;b\right][/latex] задана последовательность дифференцируемых функций [latex]\left \{ f_{n} \right \}[/latex], сходящаяся в некоторой точке [latex]x\in \left[a;b\right][/latex] и такова, что функциональная последовательность [latex]\left \{ f’_{n} \right \}[/latex] сходится равномерно на [latex]\left[a;b\right][/latex]. Тогда последовательность [latex]\left \{ f_{n} \right \}[/latex] равномерно сходится на всем отрезке [latex]\left[a;b\right][/latex] к некоторой функции [latex]f[/latex], причем эта функция [latex]f[/latex] дифференцируема на [latex]\left[a;b\right][/latex] и справедливо равенство $$f'(x)=\lim_{n\rightarrow \infty }f’_{n}(x) \; \; \; \; \; (x\in \left[a;b\right])$$.

Доказательство

Спойлер

Зададим [latex]\varepsilon > 0[/latex]. По критерию Коши, в силу равномерной сходимости последовательности [latex]\left \{ f’_{n} \right \}[/latex], существует такой номер [latex]N[/latex], что для всех [latex]n, m\geq N[/latex] и для любого [latex]x\in \left[a;b\right][/latex] справедливо неравенство $$\left | f’_{n}(x)-f’_{m}(x) \right |< \varepsilon$$
Обозначим [latex]\varphi _{n, m}(x)=f_{n}(x)-f_{m}(x)[/latex]. Тогда [latex]\left | \varphi {}’_{n,m}(x) \right |< \varepsilon[/latex] и, в силу формулы Лагранжа, $$\left | \varphi _{n,m}(x)-\varphi _{n,m}(x_{0}) \right |\leq \left | \varphi {}'_{n,m}(\xi ) \right |\cdot \left | x-x_{0} \right |\leq \varepsilon \left | x-x_{0} \right |$$
Отсюда следует, что
$$\left | f_{n}(x)-f_{m}(x) \right |=\left | \varphi _{n,m}(x) \right |\leq \left | \varphi _{n,m}(x)-\varphi _{n,m}(x_{0}) \right |+\left | \varphi _{n,m}(x_{0}) \right |\leq \varepsilon \left | x-x_{0} \right |+\left | f_{n}(x_{0})-f_{m}(x_{0}) \right |$$
Из этого неравенства видно, что последовательность [latex]\left \{ f_{n} \right \}[/latex] удовлетворяет условию критерия Коши, а значит, она равномерно сходится. Обозначим [latex]f(x)=\lim_{n\rightarrow \infty }f_{n}(x)[/latex]. Далее, для [latex]n,m\geq N[/latex] имеем $$\left | \varphi _{n,m}(x+h)-\varphi _{n,m}(x) \right |\leq \varepsilon \left | h \right |\; \; \; \; \; (x, x+h\in \left [ a,b \right ])$$
Это неравенство можем переписать так: $$\left | \frac{f_{n}(x+h)-f_{n}(x)}{h} — \frac{f_{m}(x+h)-f_{m}(x)}{h}\right |\leq \varepsilon $$
Устремим [latex]n\rightarrow \infty [/latex] и тогда получим $$\left | \frac{f(x+h)-f(x)}{h} — \frac{f_{m}(x+h)-f_{m}(x)}{h}\right |\leq \varepsilon \; \; \; \; \; (m\geq N)$$
Зафиксируем [latex]m\geq N[/latex] и найдем такое [latex]\delta >0[/latex], что для всех [latex]h[/latex], удовлетворяющих условию [latex]0< \left | h \right |< \delta [/latex], справедливо неравенство $$\left | \frac{f_{m}(x+b)-f_{m}(x)}{h} -f{}'_{m}(x)\right |< \varepsilon $$
Тогда получим, что $$\left | \frac{f(x+h)-f(x)}{h}-f'_{m}(x) \right |< 2\varepsilon \; \; \; \; \; (0< \left | h \right |< \delta)$$
Если в неравенстве [latex]\left | f'_{n}(x)-f'_{m}(x) \right |< \varepsilon [/latex] ([latex]n, m\geq N[/latex]) перейдем к пределу при [latex]n\rightarrow \infty [/latex] (как уже доказано, он существует), то получим $$\left | \varphi (x)-f'_{m}(x) \right |\leq \varepsilon$$ где обозначено [latex]\varphi (x)=\lim_{n\rightarrow \infty }f'_{n}(x)[/latex]. Отсюда следует, что $$\left | \frac{f(x+h)-f(x)}{h}-\varphi(x) \right |< 3\varepsilon \; \; \; \; \; (0< \left | h \right |< \delta)$$
Это означает, что существует $$\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}=\varphi (x)=\lim_{n\rightarrow \infty }f'_{n}(x) \; \; \; \; \; \; (x \in \left[a;b\right])$$ .

[свернуть]

Тесты

Равномерная сходимость и дифференцируемость

Проверьте свои знания по теме «Равномерная сходимость и дифференцирование»

Равномерная сходимость последовательностей и рядов

Функциональные последовательности

Если каждому натуральному числу [latex]n[/latex] ставится в соответствие по некоторому закону функция [latex]f_n(x)[/latex], определенная на множестве [latex]E[/latex], то говорят, что на множестве [latex]E[/latex] задана функциональная последовательность [latex]\left \{f_n (x)\right \}[/latex]. Множество [latex]E[/latex] называется областью определения последовательности [latex]\left \{f_n (x)\right \}[/latex].

Если для некоторого [latex]x_0 \in E[/latex] числовая последовательность [latex]\left \{f_n (x_0) \right \}[/latex] сходится, то говорят, что последовательность функций [latex]\left \{f_n (x) \right \}[/latex] сходится в точке [latex]x_0[/latex]. Последовательность функций, сходящуюся в каждой точке [latex]x \in E[/latex], называют сходящейся на множестве [latex]E[/latex].

Если [latex]\underset {n \to \infty}{\lim} f_n(x) = f(x)[/latex] для всех [latex]x \in E[/latex], то говорят, что последовательность [latex]\left \{f_n (x) \right \}[/latex] на множестве [latex]E[/latex] сходится к функции [latex]f(x)[/latex]. Эту функцию называют предельной функцией последовательности.

Равномерная сходимость функциональных последовательностей

Пусть задана последовательность функций [latex]\left \{ f_n(x) \right \}[/latex] и предельная функция [latex]f(x)[/latex]. Говорят, что последовательность функций равномерно сходится на множестве [latex]E[/latex] к функции [latex]f(x)[/latex] если
$$\forall \varepsilon >0 \quad \exists n_{ \varepsilon }\in \mathbb{N}: \forall n \ge n_\varepsilon \ \forall x \in E \Rightarrow \left|f_n(x)-f(x) \right| < \varepsilon .$$
Последовательность [latex]\left \{ f_n(x) \right \}[/latex] называется равномерно сходящейся на [latex]E[/latex], если существует функция [latex]f(x)[/latex], к которой она равномерно сходится.

Спойлер

Рассмотрим последовательность [latex]\left \{f_n(x) \right \}[/latex], [latex]f_n(x) = \frac{1}{n}x^n[/latex] на отрезке [latex]\left [ 0;1 \right ][/latex]. Она равномерно сходится на этом отрезке.

thirdtopic

Действительно, так как [latex]0 < \frac{1}{n}x^n < \frac{1}{n}[/latex] и [latex]\underset{n \to \infty}{\lim} \frac{1}{n} = 0[/latex], то для любой точности [latex]\varepsilon > 0[/latex] мы можем выбрать номер [latex] n_\varepsilon = \left \lceil \frac{1}{\varepsilon } \right \rceil + 1[/latex], начиная с которого все последующие члены ряда будут меньше [latex]\varepsilon[/latex], [latex]\left | f_n(x) \right | < \varepsilon[/latex]. Значит последовательность сходится равномерно к нулю на [latex]\left [ 0;1 \right ][/latex].

[свернуть]

Функциональные ряды

Аналогично вводим понятие функциональных рядов. Пусть каждому натуральному числу [latex]n[/latex] ставится в соответствие по некоторому закону функция [latex]u_n(x)[/latex], определенная на множестве [latex]E[/latex]. Формально говоря нам дана функциональная последовательность [latex]\left \{ u_n(x) \right \}[/latex].

Выражение вида [latex]u_{ 1 }(x)+u_2(x) +\dots +u_n(x) +\dots =\overset{\infty}{\underset{n=1}{\sum}}u_n(x)[/latex] называется функциональным рядом. Если для некоторого [latex]x_0 \in E[/latex] числовой ряд [latex]\sum_{n=1}^{\infty} u_n(x_0)[/latex] сходится, то говорят, что функциональный ряд [latex]\sum_{n=1}^{\infty} u_n(x)[/latex] сходится в точке [latex]x_0[/latex]. Функциональный ряд, сходящийся в каждой точке [latex]x \in E[/latex], называют сходящимся на множестве [latex]E[/latex].

Сумма [latex]n[/latex] первых членов ряда [latex]S_n(x) = \overset{n}{\underset{k=1}{\sum}}u_k(x)[/latex] называется его частичной суммой. Заметим, что частичная сумма сама является функцией. Мы получаем функциональную последовательность [latex]\left \{ S_n(x) \right \}[/latex].

Спойлер

Изучим сходимость ряда
$$x^2 + \frac{x^2}{1+x^2} + \dots + \frac{x^2}{(1+x^2)^n} + \dots,$$
Где [latex]x[/latex] — действительное число. Этот ряд сходится при всех [latex]x[/latex]. При [latex]x \neq 0[/latex] мы имеем бесконечно убывающую геометрическую прогрессию со знаменателем [latex]q = \frac{1}{1+x^2}[/latex], [latex] 0 < q < 1[/latex]. Таким образом:
$$x^2 + \frac{x^2}{1+x^2} + \dots + \frac{x^2}{(1+x^2)^n} + \dots = \frac{x^2}{1-\frac{1}{1+x^2}} = 1 + x^2 .$$
При [latex]x = 0[/latex] каждый член ряда равен нулю и тогда сумма всего ряда равна нулю.

[свернуть]

Равномерная сходимость функциональных рядов

Пусть задан функциональный ряд [latex]\overset{\infty}{\underset{n=1}{\sum}}u_n(x)[/latex], члены которого являются функциями, определенными на множестве [latex]E[/latex]. Функциональный ряд называется равномерно сходящимся на множестве [latex]E[/latex], если последовательность его частичных сумм равномерно сходящаяся на множестве [latex]E[/latex]. Согласно определению равномерной сходимости последовательности функции, существует такая функция [latex]S(x)[/latex], что
$$\forall \varepsilon >0 \quad \exists n_{ \varepsilon }\in \mathbb{N}: \forall n \ge n_\varepsilon \ \forall x \in E \Rightarrow \left|S_n(x)-S(x) \right| < \varepsilon .$$
Обозначим [latex]S_n(x)-S(x)=r_n(x)[/latex] — [latex]n[/latex]-ый остаток ряда, получаем [latex]r_n(x) = \overset{\infty}{\underset{k=n+1}{\sum}}u_k(x)[/latex]. Тогда условие сходимости ряда примет вид: $$\forall \varepsilon >0 \quad \exists n_{ \varepsilon }\in \mathbb{N}: \forall n \ge n_\varepsilon \ \forall x \in E \Rightarrow \left|r_n(x)\right| < \varepsilon .$$
Это означает, что какое бы мы маленькое [latex]\varepsilon[/latex] не взяли, начиная с некоторого номера [latex]n[/latex], [latex]n[/latex]-ый остаток ряда будет меньше этого [latex]\varepsilon[/latex].

Необходимое условие равномерной сходимости функционального ряда

Теорема

Если функциональный ряд [latex]\overset{\infty}{\underset{n=1}{\sum}}u_n(x)[/latex] равномерно сходится на множестве [latex]E[/latex], то последовательность его членов [latex]\left \{ u_n(x) \right \}[/latex] равномерно стремится к нулю на множестве [latex]E[/latex].

Доказательство

Обозначим частичные суммы ряда как [latex]S_n(x)[/latex], а сумму ряда (предельную функцию последовательности частичных сумм) как [latex]S(x)[/latex]. Согласно определению равномерной сходимости ряда
$$\forall \varepsilon >0 \quad \exists n_{ \varepsilon }\in \mathbb{N}: \forall n \ge n_\varepsilon \ \forall x \in E \Rightarrow \left|S_n(x)-S(x) \right| < \frac{\varepsilon}{2} ,$$
поэтому для [latex]\forall n \ge n_\varepsilon[/latex] справедливо также неравенство
$$\left| u_{ n+1 }(x) \right| =\left| S_{ n+1 }(x)-S_{ n }(x) \right| =\left| \left[ S_{n+1}(x)-S(x) \right] + \left[S(x) — S_n(x) \right] \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon .$$
А это и означает равномерную сходимость к нулю последовательности [latex]\left \{ u_n(x) \right \}[/latex].

Список Литературы

Равномерная сходимость последовательностей и рядов

После прочтения статьи, для закрепления материала, рекомендуется пройти тест по данной теме


Таблица лучших: Равномерная сходимость последовательностей и рядов

максимум из 60 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных