Линейная зависимость и независимость систем векторов. Критерии ЛЗ и ЛНЗ.

Теоретический материал

Задача

Выяснить, является ли система векторов линейно зависимой или линейно независимой.

$x_{1}=(1,2,3)$

$x_{2}=(3,6,7)$

Решение:

Построим линейную комбинацию из векторов системы.

$\alpha_{1}x_{1}+\alpha_{2}x_{2}=0$

$\alpha_{1}(1,2,3)+\alpha_{2}(3,6,7)=0$

$(\alpha_{1},2\alpha_{1},3\alpha_{1})+(3\alpha_{2},6\alpha_{2},7\alpha_{2})=0$

$(\alpha_{1}+3\alpha_{2},2\alpha_{1}+6\alpha_{2},3\alpha_{1}+7\alpha_{2})=0$

Далее, необходимо решить однородную систему линейных уравнений.

$\left\{\begin{matrix}
\alpha_{1} &+3\alpha_{2} &=0 \\
2\alpha_{1}&+6\alpha_{2} &=0 \\
3\alpha_{1}&+7\alpha_{2} &=0
\end{matrix}\right. $

Как видим, первое и второе уравнения линейно зависимы, т.е. ранг системы равен 2. Так как ранг системы совпадает с числом неизвестных, то система имеет только нулевое решение.

$\alpha_{1}=\alpha_{2}=0$

Система линейно независима по критерию ЛНЗ.

 Задача

Выяснить, является ли система векторов линейно зависимой или линейно независимой.

$x_{1}=(5,4,3)$

$x_{2}=(3,3,2)$

$x_{3}=(8,1,3)$

Решение:

Построим линейную комбинацию из векторов системы.

$\alpha_{1}x_{1}+\alpha_{2}x_{2}+\alpha_{3}x_{3}=0$

$\alpha_{1}(5,4,3)+\alpha_{2}(3,3,2)+\alpha_{3}(8,1,3)=0$

$(5\alpha_{1},4\alpha_{2},3\alpha_{3})+(3\alpha_{1},3\alpha_{2},2\alpha_{3})+(8\alpha_{1},\alpha_{2},3\alpha_{3})=0$

Составим систему линейных уравнений.

$
\left\{\begin{matrix}
5\alpha_{1}&+4\alpha_{2} &+,3\alpha_{3} &=0 \\
3\alpha_{1}&+3\alpha_{2} &+2\alpha_{3} &=0 \\
8\alpha_{1}&+\alpha_{2} &+3\alpha_{3} &=0
\end{matrix}\right. $

Решим систему уравнений методом Гаусса.

$\begin{pmatrix}
5 &4 &3 \\
3&3 &2 \\
8&1 &3
\end{pmatrix}
\sim
\begin{pmatrix}
-1&-2 &-1 \\
0&-3 &-1 \\
0&-15 &-5
\end{pmatrix}
\sim$ $
\begin{pmatrix}
-1 &-2 &-1 \\
0&-3 &-1
\end{pmatrix}$

$\left\{\begin{matrix}
-\alpha_{1}&-2\alpha_{2} &-\alpha_{3} &=0 \\
&-3\alpha_{2} &-\alpha_{3} &=0
\end{matrix}\right.$

Общее решение системы будет иметь следующий вид:

$\alpha_{3}=-3\alpha_{2}$

$\alpha_{1}=\alpha_{2}$

Т.е. система линейно зависима по первому критерию ЛЗ.

Литература

Симметрическая группа

Множество всех подстановок порядка n с операцией умножения подстановок образуют группу S_n. Единичным элементом группы является подстановка e=\begin{pmatrix}1&2&\cdots&n\\1&2&\cdots&n\end{pmatrix}, обратной подстановкой для \pi=\begin{pmatrix}i_1&i_2&\cdots&i_n\\j_1&j_2&\cdots&j_n\end{pmatrix} является \pi^{-1}=\begin{pmatrix}j_1&j_2&\cdots&j_n\\i_1&i_2&\cdots&i_n\end{pmatrix}. Порядок этой группы равен n!.
Группа S_n называется симметрической группой порядка n .
При n>2 группа S_n не коммутативна.

Пример

Группа S_3 состоит из шести элементов: e=\begin{pmatrix}1&2&3\\1&2&3\end{pmatrix},\begin{pmatrix}1&2&3\\1&3&2\end{pmatrix},\begin{pmatrix}1&2&3\\2&1&3\end{pmatrix},\begin{pmatrix}1&2&3\\2&3&1\end{pmatrix},\begin{pmatrix}1&2&3\\3&1&2\end{pmatrix},\begin{pmatrix}1&2&3\\3&2&1\end{pmatrix}. Эта группа не коммутативна: произведение \begin{pmatrix}1&2&3\\1&2&3\end{pmatrix}\begin{pmatrix}1&2&3\\1&3&2\end{pmatrix} равно \begin{pmatrix}1&2&3\\2&1&3\end{pmatrix}, что отлично от \begin{pmatrix}1&2&3\\1&3&2\end{pmatrix}\begin{pmatrix}1&2&3\\2&3&1\end{pmatrix}=\begin{pmatrix}1&2&3\\3&2&1\end{pmatrix}.

Задача

Доказать, что порядок группы S_n равен n!.

... показать

Источники

Структуры и подструктуры

Тест на тему «Простейшие задачи на определение структур группы, кольца, поля. Подструктуры.Циклическая группа. Симметрическая группа.». Прочтите все четыре статьи, прежде чем проходить тест.

Циклическая группа

Будем говорить, что группа G является циклической, если существует такой элемент a\in G, что всякий элемент x\in G может быть записан в виде x=a^n, где n\in Z(другими словами, если отображение f: Z\rightarrow G, определяемое формулой f(n)=a^n,сюръективно). При этом элемент a называется образующей группы G. Всякая циклическая группа, очевидно, абелева.
Примером бесконечной циклической группы служит аддитивная группа целых чисел — всякое целое число кратно числу 1, то есть это число служит образующим элементом рассматриваемой группы; в качестве образующего элемента можно было бы также взять число -1.
Примером конечной циклической группы порядка n служит мультипликативная группа корней n-ой степени из единицы. Все эти корни являются степенями одного их них, а именно первообразного корня.

Задача

Пусть G — группа с групповой операцией \ast и g\in G. Доказать, что множество H=\{g^k, (g')^k|k\in N\cup \{0\}\} является группой. Группа H является циклической, порождённой g. H=\langle g\rangle.


Решение.Введём обозначения: g'=g^{-1}, (g')^k=g^{-k}. Докажем, что для m,n\in Z выполняется g^m\ast g^n=g^{m+n}.
 m\geq 0, n\geq 0\Rightarrow g^m\ast g^n=g^{m+n}.
-n\leq m<0

Структуры и подструктуры

Тест на тему «Простейшие задачи на определение структур группы, кольца, поля. Подструктуры.Циклическая группа. Симметрическая группа.». Прочтите все четыре статьи, прежде чем проходить тест.

Таблица лучших: Структуры и подструктуры

максимум из 7 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Определители n-го порядка и их свойства. Вычисление определителей приведением к треугольному виду, разложением по строке, применением общей теоремы Лапласа.

Cвойства определителя

Пример 1

Используя свойства определителя, доказать следующее тождество:

\begin{vmatrix}am+bp & an+bq \\ cm+dp & cn+dq \end{vmatrix} = \left(mq-np\right)\begin{vmatrix} a & b\\ c & d \end{vmatrix}

Решение показать

Вычисление определителя приведением матрицы к треугольному виду.

Пример 2

Вычислить определитель:

\Delta =\left|\begin{array}{rrrr}-3 & 9 & 3& 6\\ -5 & 8 & 2 & 7\\ 4 & -5 & -3 & -2\\ 7 & -8 & -4 & -5 \end{array}\right|

Решение показать

Разложение по строке или столбцу

Пример 3

Разлагая по 2-му столбцу, вычислить определитель:

\Delta =\left|\begin{array}{rrrr}5 & \:\:a & \:\:2 & -1 \\ 4 & b & 4 & -3\\ 3 & c & 3 & -2\\ 4 & d & 5 & -4 \end{array}\right|

Решение показать

Применение общей теоремы Лапласа

Пример 4

Вычислить определитель:

\Delta =\left|\begin{array}{rrrrr}2 & -1 & 3 & 4 & -5 \\ 4 & -2 & 7 & 8 & -7\\ -6 & 4 & -9 & -2 & 3\\ 3 & -2 & 4 & 1 & -2\\ -2 & 6 & 5 & 4 & -3 \end{array}\right|

Решение показать

Литература:

  1. Белозёров Г.С. Конспект лекций.
  2. Проскуряков И.В. Сборник задач по линейной алгебре. М., Физико-математическая литература, 1978 г., стр. 25, 28, 58

Тест


Таблица лучших: Определители n-го порядка и их свойства. Вычисление определителей.

максимум из 17 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Простейшие задачи на определение структур группы, кольца, поля.

Группа

Множество G с бинарной алгебраической операцией \ast называется группой, если выполняются следующие условия:

  1. Операция \ast в G ассоциативна: a\ast (b\ast c)=(a\ast b)\ast c \forall a,b,c\in G;
  2. В G существует нейтральный элемент \theta :a\ast\theta=\theta\ast a=a \forall a\in G;
  3. Для каждого элемента a\in G существует обратный ему элемент a^{-1}\in G: a\ast a^{-1}=a^{-1}\ast a=\theta .

Если операция коммутативна, то группа называется коммутативной, или абелевой. В противном случае группа называется некоммутативной.

Задача

Доказать, что множество рациональных чисел R является абелевой группой относительно операции сложения.

... показать

Кольцо

Множество K , на котором заданы две операции — сложение (+) и умножение \cdot, называется кольцом, если выполняются следующие условия:

  1. Относительно операции сложения множество K — коммутативная группа, т.е:
    1. Операция сложения коммутативна: a+b=b+a \forall a,b\in K;
    2. Операция сложения ассоциативна: a+(b+c)=(a+b)+c \forall a,b,c\in K;
    3. Существует нулевой элемент \theta: a+\theta =\theta +a=a \forall a\in K;
    4. для каждого элемента существует противоположный ему элемент (-a)\in K: a+(-a)=(-a)+a=\theta;
  2. Операция умножения в множестве K ассоциативна:
    a\cdot (b\cdot c)=(a\cdot b)\cdot c  \forall a,b,c\in K
  3. Операции сложения и умножения связаны законами дистрибутивности:
    (a+b)\cdot c=a\cdot c+b\cdot c  c\cdot (a+b)=c\cdot a+c\cdot b  \forall a,b,c\in K

Если операция умножения коммутативна:a\cdot b=b\cdot a, то кольцо называется коммутативным, в противном случае кольцо называется некоммутативным. Если для операции умножения существует единичный элемент e: a\cdot e=e\cdot a=a, то говорят, что кольцо — есть кольцо с единицей.

Задача

Проверить яляется ли кольцом множество комплексных чисел.

... показать

Поле

Полем называется кольцо P, обладающее следующими свойствами:
1. Обратимость умножения. \forall a,b\in P, где a\neq 0, уравнение ax = b имеет (по крайней мере одно) решение, т. е. существует элемент такой, что aq = b.

2. P содержит по крайней мере один элемент, отличный от нуля.

Источники

Структуры и подструктуры

Тест на тему «Простейшие задачи на определение структур группы, кольца, поля. Подструктуры.Циклическая группа. Симметрическая группа.». Прочтите все четыре статьи, прежде чем проходить тест.

Таблица лучших: Структуры и подструктуры

максимум из 7 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных