Определение предела функции по Коши и по Гейне, их эквивалентность

Определение предела функции по Коши

Пусть функция f(x) определена в проколотой окрестности 0(x^{0}) точки x^{0} метрического пространства X . Говорят, что число A есть предел функции f(x) при x \to x_{0} , если \forall \varepsilon > 0 \exists \delta > 0 такое, что для \forall x \in O(x^{0}) , удовлетворяющего условию \rho(x, x^{0}) < \delta ,  выполнено неравенство \left | f(x) - A \right | < \varepsilon .

Определение предела функции по Гейне

Говорят, что функция f(x) , определенная в 0(x^{0}) , имеет при x \to x_{0} предел A , если для любой последовательности x^{k} \in 0(x^{0}) такой, что lim_{k \to \infty}x^{k} = x^{0} , выполнено равенство lim_{k \to \infty}f(x^{k}) = A .

Эквивалентность двух определений предела доказывается так же, как и для функций одной переменной.

Пример

Докажем, что lim_{x \to 0 , y \to 0}(x^{2}+y^{2})^{a}=0 , если a>0 . Возьмем любое \varepsilon > 0 . Положим \delta= \varepsilon^{\frac{1}{2a}} . Пусть (x,y) \in S_{\delta}(0,0) , тогда (x^{2}+y^{2})^{a}<\delta^{2a}<\varepsilon , т.е. lim_{x \to 0 , y \to 0}(x^{2}+y^{2})^{a}=0 .

Определение предела функции по Коши и по Гейне.

Литература:

 

Свойства границ, связанные с арифметическими операциями и с неравенствами

Свойства пределов, связанные с алгебраическими операциями

Если функции f(x) и g(x) имеют конечные пределы в точке a, причем \lim_{x\rightarrow a}f(x)=A и \lim_{x\rightarrow a}g(x)=B то:

  1. \lim_{x\rightarrow a}(f(x)+g(x))=A+B
  2. Доказательство
    Так как функции f(x) и g(x) имеют предел в точке a, то при x\rightarrow a величины h_{f}(x)=A-f(x) и h_{g}(x)=B-g(x) будут бесконечно малыми. Отсюда, согласно свойствам бесконечно малых h_{f}+h_{g}=(A+B)-(f(x)+g(x)) также будет бесконечно малой величиной. Что в свою очередь означает, что \lim_{x\rightarrow a}(f(x)+g(x))=A+B

  3. \lim_{x\rightarrow a}(f(x)g(x))=AB
  4. Доказательство
    Так как функции f(x) и g(x) имеют предел в точке a, то при x\rightarrow a величины h_{f}(x)=A-f(x) и h_{g}(x)=B-g(x) будут бесконечно малыми. Поэтому g(x)=A-h_{f}(x) и g(x)=B-h_{g}(x). Отсюда
    \\f(x)g(x)=(A-h_{f})(B-h_{g})\\f(x)g(x)=AB-Ah_{g}-Bh_{f}+h_{f}h_{g}\\AB-f(x)g(x)=Ah_{g}+Bh_{f}-h_{f}h_{g}
    Согласно свойствам бесконечно малых, величина в правой части — бесконечно малая. Что в свою очередь означает, что \lim_{x\rightarrow a}(f(x)g(x))=AB

  5. \lim_{x\rightarrow a}(\frac{f(x)}{g(x)})=\frac{A}{B}, причем B\neq 0
  6. Доказательство
    Условие \lim_{x\rightarrow a}(\frac{f(x)}{g(x)})=\frac{A}{B} эквивалентно тому, что разность \frac{A}{B}-\frac{f(x)}{g(x)}
    бесконечно малая величина при x\rightarrow a. Покажем, что это утверждение имеет место. Приведем к общему знаменателю, получим \frac{Ag(x)-Bf(x)}{Bg(x)}. Рассмотрим предел числителя дроби.
    \\\lim_{x\rightarrow a}(Ag(x)-Bf(x))\\A\lim_{x\rightarrow a}g(x)-B\lim_{x\rightarrow a}f(x)\\AB-BA=0\: \Rightarrow \frac{A}{B}-\frac{f(x)}{g(x)}=0
    Что в свою очередь означает, что \lim_{x\rightarrow a}(\frac{f(x)}{g(x)})=\frac{A}{B}

Свойства пределов, связанные с неравенствами

  1. Теорема о двух милиционерах
  2. Если \exists \delta > 0:\forall x\in \dot{U}_{\delta }(a) выполняются неравенства g(x)\leqslant f(x)\leqslant h(x) и если \lim_{x\rightarrow a}g(x)= \lim_{x\rightarrow a}h(x)=A то \exists \lim_{x\rightarrow a}f(x)=A.
    Доказательство
    Воспользуемся определением предела по Гейне. Пусть \begin{Bmatrix}x_{n}\end{Bmatrix} — последовательность из \dot{U}_{\delta }(a), причем \lim_{x\rightarrow \infty }x_{n}=a. Тогда выполняются условия g(x_{n})\leqslant f(x_{n})\leqslant h(x_{n}) и \lim_{n\rightarrow \infty}g(x_{n})= \lim_{n\rightarrow \infty}h(x_{n})=A. Тогда в силу свойств пределов последовательностей \lim _{n\rightarrow \infty }f(x_{n})=A. Следовательно \lim _{x\rightarrow a }f(x)=A.
    Теорему можно проиллюстрировать следующим графиком:
    t3pol

  3. Если \exists\delta >0:\forall x\in \dot{U}_{\delta }(a) выполняется неравенство f(x)\leqslant g(x) и если\lim_{x\rightarrow  a}f(x)=A, \lim_{x\rightarrow  a}g(x)=B, то A\leqslant B.
  4. Доказательство
    Воспользуемся определением предела по Гейне. Пусть \begin{Bmatrix}x_{n}\end{Bmatrix} — последовательность из \dot{U}_{\delta }(a), тогда числа A и B будут пределами последовательности \begin{Bmatrix}x_{n}\end{Bmatrix}_{1}^{\infty } т.е. \lim_{n\rightarrow \infty }f(x_{n})=A и \lim_{n\rightarrow \infty }g(x_{n})=B Тогда в силу свойств пределов последовательностей A\leqslant B.

Литература

  1. Тер-Киркоров А.М., Шабунин М.И., Курс математического анализа, физмат-лит, 2001. стр. 81-84

Следующая тема →

Пределы монотонных функций

Перед тем как рассматривать теорему, давайте вспомним, что такое монотонная функция и нарисуем  её график.

Функция f(x) называется монотонно возрастающей на отрезке [a;b], если \forall x_{1}, x_{2}\in[a;b],x_{1}> x_{2}\Rightarrow f(x_{1})\geq f(x_{2})

Функция f(x) называется монотонно убывающей на отрезке [a;b], если \forall x_{1}, x_{2}\in [a;b] ,x_{1}>  x_{2}\Rightarrow f(x_{1})\leq f(x_{2})

Функция f(x) называется строго монотонно убывающей на отрезке [a;b], если \forall x_{1}, x_{2}\in [a;b],x_{1}>x_{2}\Rightarrow f(x_{1})<f(x_{2})

Функция f(x) называется строго монотонно возрастающей на отрезке [a;b], если \forall x_{1},x_{2}\in[a;b], x_{1}>x_{2}\Rightarrow f(x_{1})>f(x_{2})

Пример графика монотонно возрастающей функции.

grafik1

 

На графике видно, что \forall x_{1}, x_{2} : x_{1}>x_{2}, соответствующие значения функции f(x_{1})\geq f(x_{2})

Пример графика монотонно убывающей функции.

grafik2

На графике видно, что \forall x_{1},x_{2} : x_{1}>x_{2}, соответствующие значения функции f(x_{1})\leq f(x_{2})

Теорема о существовании односторонних пределов у монотонных функций

Формулировка:

Если функция f(x) определена и монотонна на отрезке [a;b], то в каждой точке x_{0}\in (a;b) эта функция имеет конечные пределы слева и справа, а в точках a и b правосторонний и левосторонний пределы.

Доказательство:

Пусть, например, функция f(x) монотонно возрастает на [a;b]. Выберем произвольную внутреннюю точку x_{0}\in (a;b]. Тогда \forall x\in [a;x_{0})\Rightarrow f(x)\leq f(x_{0})\Rightarrow f(x) ограничена сверху на [a;x_{0})\Rightarrow\exists\sup f(x)=M\leqslant f(x_{0}).
Согласно определению:
а) \forall x\in [a;x_{0})\Rightarrow f(x) \leqslant M
б) \forall \varepsilon > 0\exists x_{\varepsilon }:M-\varepsilon < f(x_{\varepsilon }), обозначим \delta =x_{0}-x_{\varepsilon }>0.
Если x\in (x_{\varepsilon };x_{0})=(x_{0-\delta };x_{0}), то f(x_{\varepsilon })\leq f(x).
Итог: \forall \varepsilon >0\exists \delta>0:\forall x\in (x_{0}-\delta;x_{0}):M-\varepsilon < f(x_{\varepsilon }) < f(x)\leq M<   M+\varepsilon \Leftrightarrow |f(x)-M|< \varepsilon
\lim_{x\rightarrow x_{0-0} } f(x) = M
Итак f(x_{0}-0)= \sup f(x), a\leqslant x<x_{0} .
Аналогично доказываем, что функция имеет в точке x_{0}\in [a;b) предел справа причем f(x_{0}+0)=\inf f(x), x_{0}<x\leqslant b.
Следствие. Если функция f определена и монотонна на интервале (a;b), \forall\ x_{0}\in (a;b)\exists \ предел справа и слева, причем если f возрастает, то
f(x_{0}-0)=\lim\limits_{x\to x_{0}-0} f(x)  \leq\lim\limits_{x\to x_{0}+0} f(x)=f(x_{0}+0),
если убывает, то
f(x_{0}-0)=\lim\limits_{x\to x_{0}-0} f(x)  \geq\lim\limits_{x\to x_{0}+0} f(x)=f(x_{0}+0).

Литература

Тест

Тест по теме Пределы монотонных функций.

Желаем удачи!

Таблица лучших: Предел монотонной функции

максимум из 10 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Единственность предела функции, локальная ограниченность функции, имеющей предел

1. Единственность предела функции

Как мы говорили с Вами в прошлой статье, единственность предела следует из определения предела функции по Гейне. Однако давайте сформулируем и докажем теорему о единственности предела.

Теорема о единственности предела

Формулировка:

Если функция f(x) в точке a имеет предел, то этот предел единственный.

Доказательство:

Докажем методом от противного. Предположим, что \lim\limits_{x\rightarrow a } f(x) = b, \lim\limits_{x\rightarrow a } f(x) = c, b \neq c. Возьмём \varepsilon = \frac{|b-c|}{2}, по определению и свойству окрестности найдётся такая проколотая  
\delta-окрестность точки a (\dot{U}_{\delta }(a)), в которой одновременно будут выполнятся неравенства |f(x)-b|<\frac{|b-c|}{2}, |f(x)-c|<\frac{|b-c|}{2} , тогда в точках этой же окрестности |b-c|=|(b-f(x))+(f(x)-c)| \leq |f(x)-b|+|f(x)-c|< \frac{|b-c|}{2}+\frac{|b-c|}{2}=|b-c|. Получили противоречие |b-c| < |b-c|. Отсюда, функция f(x) в точке a имеет единственный предел.

2. Локальная ограниченность функции, имеющей предел

Теорема о локальной ограниченности функции, имеющей предел

Формулировка:

Если предел функции f(x) при x\rightarrow a равняется A, то найдётся окрестность точки a, во всех точках которой функция f(x) ограничена.

Доказательство:

Из определения предела по Коши получим: \forall \varepsilon >0  \exists \delta=\delta(\varepsilon) >0:\forall x\in \dot{U}_{\delta }(a)\Rightarrow |f(x)-A|<\varepsilon. Возьмём \varepsilon =1. Из условия теоремы следует существование окрестности \dot{U}_{\delta }(a). Следовательно, |f(x)-A|<1. Перепишем это следующим образом:A-1<f(x)<A+1. Легко видеть, что это и означает ограниченность функции f(x).

 Литература

Тест

Тест по теме Единственность предела, локальная ограниченность функции, имеющей предел.

Таблица лучших: Единственность предела

максимум из 17 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Геометрический смысл предела

Выясним, в чём заключается геометрический смысл предела функции в точке. Построим график функции y=f(x) и отметим на нём точки x=a и y=A.

grafik1

Предел функции y=f(x) в точке x\rightarrow a существует и равен A, если для любой \varepsilon-окрестности точки A можно указать такую \delta-окрестность точки a, что для любого x из этой \delta-окрестности значение y=f(x) будет находится в \varepsilon-окрестности точки A.

Отметим, что по определению предела функции в точке для существования предела при x\rightarrow a не важно, какое значение принимает функция в самой точке a. Можно привести примеры, когда функция не определена при x=a или принимает значение, отличное от A. Тем не менее, предел может быть равен A.

Литература: