4.2 Определение и примеры непрерывных функций

Определение. Пусть функция $f$ определена на интервале $(a, b)$ и точка $x_0 \in (a, b)$. Говорят, что функция $f$ непрерывна в точке $x_0$, если
$$\lim_{x \to x_0} f(x) = f (x_0).$$

Замечание. В отличие от определения предела функции $f$ в точке $x_0$, здесь мы требуем, чтобы функция $f$ была определена не только в проколотой окрестности точки $x_0$, а в целой окрестности точки $x_0$. Кроме того, $\displaystyle \lim_{x \to x_0} f(x)$ не просто существует, а равен определенному значению, а именно, $f(x_0)$.

Используя определение предела функции в смысле Коши, определение непрерывности функции $f$ в точке $x_0$ в кванторах можно записать следующим образом:
$$\forall \varepsilon > 0 \space \exists \delta = \delta (\varepsilon) > 0 : \forall x \in (a, b) : |x−x_0| < \delta \Rightarrow \\ \Rightarrow |f(x)−f(x_0)| < \varepsilon.$$
В этом определении можно не требовать выполнения условия $|x−x_0| > 0$, т. к. при $|x−x_0| = 0$ неравенство $|f(x)−f(x_0)| < \varepsilon$, очевидно, выполнено.

Так как величина $\displaystyle \lim_{x \to x_0} f(x)$ зависит лишь от тех значений, которые функция $f$ принимает в сколь угодно малой окрестности точки $x_0$, то непрерывность — это локальное свойство функции.

В терминах окрестностей определение непрерывности выглядит следующим образом.

Определение. Функция $f$ называется непрерывной в точке $x_0$, если для любой окрестности $V$ точки $f(x_0)$ найдется такая окрестность $U$ точки $x_0$, что для всех $x \in U$ значение $f(x) \in V$ , т. е. $f(U \cap (a, b)) \subset V$.

Применяя определение предела функции в смысле Гейне, определение непрерывности можно сформулировать так.

Определение. Функция $f$, определенная на интервале $(a, b)$, называется непрерывной в точке $x_0 \in (a, b)$, если любая последовательность аргументов $\{x_n\} \space (x_n \in (a, b), x_n \to x_0)$ порождает последовательность значений функции $\{f(x_n)\}$, стремящуюся к $f(x_0)$.

Применяя понятие одностороннего предела (т. е. предела слева и справа) в точке $x_0$, можно дать определения непрерывности слева (справа) в точке $x_0$. Именно, функция $f$ называется непрерывной слева (справа) в точке $x_0$, если $\displaystyle \lim_{x \to x_0−0} f(x) = f(x_0) (\lim_{x \to x_0+0} f(x) = f(x_0))$. При этом в определении непрерывности слева достаточно считать, что функция $f$ определена лишь в левой полуокрестности точки $x_0$, т. е. на $(a, x_0]$, а для непрерывности справа — на $[x_0, b)$.

Легко видеть, что справедливо следующее

Утверждение. Для того, чтобы функция $f$ была непрерывной в точке $x_0$, необходимо и достаточно, чтобы $f$ была непрерывной слева и справа в точке $x_0$.

Определение. Функция $f$, определенная на интервале $(a, b)$, называется разрывной в точке $x_0 \in (a, b)$, если $f$ не является непрерывной в этой точке.

Итак, функция $f$ является разрывной в точке $x_0$, если выполнено одно из двух следующих условий.

1. Либо не существует $\displaystyle \lim_{x \to x_0} f(x)$.

2. Либо предел $\displaystyle \lim_{x \to x_0} f(x)$ существует, но он не равен $f(x_0)$.

Пример 1. $f(x) \equiv C = Const$. Эта функция непрерывна в каждой точке $x_0 \in \mathbb{R}$, т. к. для любого $x \in \mathbb{R} \space |f(x)−f(x_0)| = 0$.

Пример 2. $f(x) = x^2, −\infty < x < +\infty, x_0 \in \mathbb{R}$. Зададим $\varepsilon > 0$. Тогда из неравенства
$$|x^2-x_0^2| \leq (|x|+|x_0|)|x-x_0|$$
следует, что при $|x−x_0| < \delta = \min{\Bigr(1, \frac{\varepsilon}{2|x_0|+1}\Bigl)}$ справедливо неравенство $|x^2-x_0^2| < \varepsilon$, т. е. $\displaystyle \lim_{x \to x_0} x^2 = x_0^2$, а значит, функция $f(x) = x^2$ непрерывна в любой точке $x_0 \in \mathbb{R}$.

Пример 3. $f(x) = \sqrt{x}, \space 0 \leq x < +\infty$. Если $x_0 \in (0, +\infty)$, то
$$|\sqrt{x}-\sqrt{x_0}| = \frac{|x-x_0|}{\sqrt{x}+\sqrt{x_0}} \leq \frac{1}{\sqrt{x_0}} |x-x_0| < \varepsilon,$$
если только $|x-x_0| < \delta \equiv \sqrt{x_0} \cdot \varepsilon$. Таким образом, функция $f(x) = \sqrt{x}$ непрерывна в каждой точке $x_0 > 0$. В точке $x_0 = 0$ можно ставить вопрос о непрерывности справа. Имеем $|\sqrt{x}-\sqrt{0}| = \sqrt{x} < \varepsilon \space$, если только $0 \leq x < \delta \equiv \varepsilon^2$. Итак, $\displaystyle \lim_{x \to 0+} \sqrt{x} = 0 = \sqrt{0}$, т. е. функция $f(x) = \sqrt{x}$ непрерывна справа в точке $0$.

Пример 4. $f(x)=\sin{x}, -\infty < x < +\infty$. Пусть $x_0 \in \mathbb{R}$. Тогда
$$|\sin{x}−\sin{x_0}| = \Bigg|2\cos{\frac{x+x_0}{2}}\sin{\frac{x-x_0}{2}}\Bigg| \leq \\ \leq 2\Bigg|\sin{\frac{x-x_0}{2}}\Bigg| \leq |x−x_0|,$$
где последнее неравенство в этой цепочке следует из доказанного выше неравенства $|\sin{t}| \leq |t| \space (0 < |t| < \pi/2)$. Можем считать, что $|x−x_0| < \pi$. Тогда при $|x−x_0| < \delta \equiv \min{(\pi, \varepsilon)}$ справедливо $|\sin{x}−\sin{x_0}| < \varepsilon$, т. е. функция $f(x) = \sin{x}$ непрерывна в каждой точке $x_0 \in \mathbb{R}$.

Аналогично доказываем, что функция $f(x) = \cos{x}$ непрерывна в каждой точке $x_0 \in \mathbb{R}$.

Пример 5. $f(x) = x \cdot \sin{\frac{1}{x}}$ при $x \neq 0$ и $f(0) = 0$. Покажем, что функция $f$ непрерывна в точке $x_0= 0$. Имеем $f(0) = 0$ и
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} x \sin{\frac{1}{x}} = 0$$
(т. к. $|f(x)−0| = |x \sin{\frac{1}{x}}| \leq |x| < \varepsilon$, если только $|x−0| = |x| < \delta \equiv \varepsilon$). Итак, $\displaystyle \lim_{x \to 0} f(x) = f(0)$, так что $f$ непрерывна в точке $0$.

Пример 6. $f(x) = \operatorname{sign} x, x \in R$. Если $x_0 \neq 0$, то функция $f$ постоянна в некоторой окрестности точки $x_0$ и, следовательно, непрерывна в этой точке. Если же $x_0 = 0$, то не существует предела функции $f$ при $x \to 0$. Значит, функция $f$ разрывна в точке $0$. Более того, $\displaystyle \lim_{x \to 0+} \operatorname{sign} x = 1, \lim_{x \to 0−} \operatorname{sign} x = −1, \operatorname{sign} 0 = 0$, так что функция $\operatorname{sign} x$ разрывна в точке $0$ как слева, так и справа.

Пример 7. Рассмотрим функцию Дирихле
$$\begin{equation*}D(x) = \begin{cases} 1, \quad x \in \mathbb{Q}, \\ 0, \quad x \in \mathbb{R \setminus Q}. \end{cases} \end{equation*}$$
Пусть $x_0 \in \mathbb{R}$. Покажем, что не существует предела функции $D$ при $x \to x_0$. Для этого выберем последовательность $\{x^\prime_n\}$ отличных от $x_0$ рациональных чисел, стремящуюся к $x_0$. Тогда $D(x^\prime_n) = 1$ и, значит, $\displaystyle \lim_{n \to \infty} D(x^\prime_n) = 1$. Если же взять последовательность $\{x^{\prime\prime}_n\}$, отличных от $x_0$ иррациональных чисел, стремящуюся к $x_0$, то получим, что $D(x^{\prime\prime}_n) = 0$ и $\displaystyle \lim_{n \to \infty} D(x^{\prime\prime}_n) = 0$. В силу определения предела функции по Гейне получаем, что функция $D$ не имеет предела в точке $x_0$. Так как $x_0 \in \mathbb{R}$ — произвольная точка, то это означает, что функция Дирихле разрывна в каждой точке.

Пример 8. $f(x) = x \cdot D(x), \space x \in \mathbb{R}$. Функция $f$ разрывна в каждой точке $x_0 \neq 0$. В самом деле, если $\{x^\prime_n\}$ и $\{x^{\prime\prime}_n\}$ соответственно последовательности рациональных и иррациональных отличных от $x_0$ чисел, стремящиеся к $x_0$, то $\displaystyle \lim_{n \to \infty} f(x^\prime_n) = 0$ и $\displaystyle \lim_{n \to \infty} f(x^{\prime\prime}_n) = 0$, так что, в силу определения предела функции по Гейне, функция $f$ не имеет предела в точке $x_0$. Если же $x_0 = 0$, то $\displaystyle \lim_{x \to 0} f(x) = 0 = f(0)$. Действительно, $|f(x)| = |x \cdot D(x)| \leq |x| < \varepsilon$, если только $|x−0| = |x| < \delta \equiv \varepsilon$. Это означает, что данная функция непрерывна в единственной точке $x_0 = 0$.

Примеры решения задач

Пусть функция $f$ определена в окрестности точки $x_0$, кроме самой точки $x_0$. Доопределить функцию $f$, задав $f(x_0)$ так, чтобы получившаяся функция была непрерывна в точке $x_0$, если:

  1. $\displaystyle f(x) = \frac{x^2-1}{x+1}, \space x_0 = -1$.

    Решение

    $$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \frac{(x-1)(x+1)}{x+1} = \lim_{x \to -1} (x-1) = -2$$
    Таким образом, положим $\displaystyle f(-1) = \lim_{x \to -1} f(x) = -2$. Значит, функция непрерывна в точке $x_0 = -1$.

  2. $\displaystyle f(x) = \frac{\sqrt{1+x}-1}{x}, \space x_0 = 0$.

    Решение

    Воспользовавшись таблицей эквивалентных, получим:
    $$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \frac{(1+x)^{\frac{1}{2}}-1}{x} \backsim \lim_{x \to 0} \frac{\frac{1}{2}x}{x} = \frac{1}{2}$$
    Таким образом, положим $\displaystyle f(0) = \lim_{x \to 0} f(x) = \frac{1}{2}$. Значит, функция непрерывна в точке $x_0 = 0$.

  3. $\displaystyle f(x) = x\cot{x}, \space x_0 = 0$.

    Решение

    Воспользовавшись таблицей эквивалентных, получим:
    $$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} x\frac{\cos{x}}{\sin{x}} \backsim \lim_{x \to 0} x\frac{\cos{x}}{x} = 1$$
    Таким образом, положим $\displaystyle f(0) = \lim_{x \to 0} f(x) = 1$. Значит, функция непрерывна в точке $x_0 = 0$.

Непрерывные функции

Проверьте, насколько хорошо вы усвоили эту тему и закрепите свои знания по ней, пройдя тест.

Определение предела функции по Коши и по Гейне, их эквивалентность

Определение предела функции по Коши

Пусть функция f(x) определена в проколотой окрестности 0(x^{0}) точки x^{0} метрического пространства X . Говорят, что число A есть предел функции f(x) при x \to x_{0} , если \forall \varepsilon > 0 \exists \delta > 0 такое, что для \forall x \in O(x^{0}) , удовлетворяющего условию \rho(x, x^{0}) < \delta ,  выполнено неравенство \left | f(x) - A \right | < \varepsilon .

Определение предела функции по Гейне

Говорят, что функция f(x) , определенная в 0(x^{0}) , имеет при x \to x_{0} предел A , если для любой последовательности x^{k} \in 0(x^{0}) такой, что lim_{k \to \infty}x^{k} = x^{0} , выполнено равенство lim_{k \to \infty}f(x^{k}) = A .

Эквивалентность двух определений предела доказывается так же, как и для функций одной переменной.

Пример

Докажем, что lim_{x \to 0 , y \to 0}(x^{2}+y^{2})^{a}=0 , если a>0 . Возьмем любое \varepsilon > 0 . Положим \delta= \varepsilon^{\frac{1}{2a}} . Пусть (x,y) \in S_{\delta}(0,0) , тогда (x^{2}+y^{2})^{a}<\delta^{2a}<\varepsilon , т.е. lim_{x \to 0 , y \to 0}(x^{2}+y^{2})^{a}=0 .

Определение предела функции по Коши и по Гейне.

Литература:

 

Свойства границ, связанные с арифметическими операциями и с неравенствами

Свойства пределов, связанные с алгебраическими операциями

Если функции f(x) и g(x) имеют конечные пределы в точке a, причем \lim_{x\rightarrow a}f(x)=A и \lim_{x\rightarrow a}g(x)=B то:

  1. \lim_{x\rightarrow a}(f(x)+g(x))=A+B
  2. Доказательство
    Так как функции f(x) и g(x) имеют предел в точке a, то при x\rightarrow a величины h_{f}(x)=A-f(x) и h_{g}(x)=B-g(x) будут бесконечно малыми. Отсюда, согласно свойствам бесконечно малых h_{f}+h_{g}=(A+B)-(f(x)+g(x)) также будет бесконечно малой величиной. Что в свою очередь означает, что \lim_{x\rightarrow a}(f(x)+g(x))=A+B

  3. \lim_{x\rightarrow a}(f(x)g(x))=AB
  4. Доказательство
    Так как функции f(x) и g(x) имеют предел в точке a, то при x\rightarrow a величины h_{f}(x)=A-f(x) и h_{g}(x)=B-g(x) будут бесконечно малыми. Поэтому g(x)=A-h_{f}(x) и g(x)=B-h_{g}(x). Отсюда
    \\f(x)g(x)=(A-h_{f})(B-h_{g})\\f(x)g(x)=AB-Ah_{g}-Bh_{f}+h_{f}h_{g}\\AB-f(x)g(x)=Ah_{g}+Bh_{f}-h_{f}h_{g}
    Согласно свойствам бесконечно малых, величина в правой части — бесконечно малая. Что в свою очередь означает, что \lim_{x\rightarrow a}(f(x)g(x))=AB

  5. \lim_{x\rightarrow a}(\frac{f(x)}{g(x)})=\frac{A}{B}, причем B\neq 0
  6. Доказательство
    Условие \lim_{x\rightarrow a}(\frac{f(x)}{g(x)})=\frac{A}{B} эквивалентно тому, что разность \frac{A}{B}-\frac{f(x)}{g(x)}
    бесконечно малая величина при x\rightarrow a. Покажем, что это утверждение имеет место. Приведем к общему знаменателю, получим \frac{Ag(x)-Bf(x)}{Bg(x)}. Рассмотрим предел числителя дроби.
    \\\lim_{x\rightarrow a}(Ag(x)-Bf(x))\\A\lim_{x\rightarrow a}g(x)-B\lim_{x\rightarrow a}f(x)\\AB-BA=0\: \Rightarrow \frac{A}{B}-\frac{f(x)}{g(x)}=0
    Что в свою очередь означает, что \lim_{x\rightarrow a}(\frac{f(x)}{g(x)})=\frac{A}{B}

Свойства пределов, связанные с неравенствами

  1. Теорема о двух милиционерах
  2. Если \exists \delta > 0:\forall x\in \dot{U}_{\delta }(a) выполняются неравенства g(x)\leqslant f(x)\leqslant h(x) и если \lim_{x\rightarrow a}g(x)= \lim_{x\rightarrow a}h(x)=A то \exists \lim_{x\rightarrow a}f(x)=A.
    Доказательство
    Воспользуемся определением предела по Гейне. Пусть \begin{Bmatrix}x_{n}\end{Bmatrix} — последовательность из \dot{U}_{\delta }(a), причем \lim_{x\rightarrow \infty }x_{n}=a. Тогда выполняются условия g(x_{n})\leqslant f(x_{n})\leqslant h(x_{n}) и \lim_{n\rightarrow \infty}g(x_{n})= \lim_{n\rightarrow \infty}h(x_{n})=A. Тогда в силу свойств пределов последовательностей \lim _{n\rightarrow \infty }f(x_{n})=A. Следовательно \lim _{x\rightarrow a }f(x)=A.
    Теорему можно проиллюстрировать следующим графиком:
    t3pol

  3. Если \exists\delta >0:\forall x\in \dot{U}_{\delta }(a) выполняется неравенство f(x)\leqslant g(x) и если\lim_{x\rightarrow  a}f(x)=A, \lim_{x\rightarrow  a}g(x)=B, то A\leqslant B.
  4. Доказательство
    Воспользуемся определением предела по Гейне. Пусть \begin{Bmatrix}x_{n}\end{Bmatrix} — последовательность из \dot{U}_{\delta }(a), тогда числа A и B будут пределами последовательности \begin{Bmatrix}x_{n}\end{Bmatrix}_{1}^{\infty } т.е. \lim_{n\rightarrow \infty }f(x_{n})=A и \lim_{n\rightarrow \infty }g(x_{n})=B Тогда в силу свойств пределов последовательностей A\leqslant B.

Литература

  1. Тер-Киркоров А.М., Шабунин М.И., Курс математического анализа, физмат-лит, 2001. стр. 81-84

Следующая тема →

Пределы монотонных функций

Перед тем как рассматривать теорему, давайте вспомним, что такое монотонная функция и нарисуем  её график.

Функция f(x) называется монотонно возрастающей на отрезке [a;b], если \forall x_{1}, x_{2}\in[a;b],x_{1}> x_{2}\Rightarrow f(x_{1})\geq f(x_{2})

Функция f(x) называется монотонно убывающей на отрезке [a;b], если \forall x_{1}, x_{2}\in [a;b] ,x_{1}>  x_{2}\Rightarrow f(x_{1})\leq f(x_{2})

Функция f(x) называется строго монотонно убывающей на отрезке [a;b], если \forall x_{1}, x_{2}\in [a;b],x_{1}>x_{2}\Rightarrow f(x_{1})<f(x_{2})

Функция f(x) называется строго монотонно возрастающей на отрезке [a;b], если \forall x_{1},x_{2}\in[a;b], x_{1}>x_{2}\Rightarrow f(x_{1})>f(x_{2})

Пример графика монотонно возрастающей функции.

grafik1

 

На графике видно, что \forall x_{1}, x_{2} : x_{1}>x_{2}, соответствующие значения функции f(x_{1})\geq f(x_{2})

Пример графика монотонно убывающей функции.

grafik2

На графике видно, что \forall x_{1},x_{2} : x_{1}>x_{2}, соответствующие значения функции f(x_{1})\leq f(x_{2})

Теорема о существовании односторонних пределов у монотонных функций

Формулировка:

Если функция f(x) определена и монотонна на отрезке [a;b], то в каждой точке x_{0}\in (a;b) эта функция имеет конечные пределы слева и справа, а в точках a и b правосторонний и левосторонний пределы.

Доказательство:

Пусть, например, функция f(x) монотонно возрастает на [a;b]. Выберем произвольную внутреннюю точку x_{0}\in (a;b]. Тогда \forall x\in [a;x_{0})\Rightarrow f(x)\leq f(x_{0})\Rightarrow f(x) ограничена сверху на [a;x_{0})\Rightarrow\exists\sup f(x)=M\leqslant f(x_{0}).
Согласно определению:
а) \forall x\in [a;x_{0})\Rightarrow f(x) \leqslant M
б) \forall \varepsilon > 0\exists x_{\varepsilon }:M-\varepsilon < f(x_{\varepsilon }), обозначим \delta =x_{0}-x_{\varepsilon }>0.
Если x\in (x_{\varepsilon };x_{0})=(x_{0-\delta };x_{0}), то f(x_{\varepsilon })\leq f(x).
Итог: \forall \varepsilon >0\exists \delta>0:\forall x\in (x_{0}-\delta;x_{0}):M-\varepsilon < f(x_{\varepsilon }) < f(x)\leq M<   M+\varepsilon \Leftrightarrow |f(x)-M|< \varepsilon
\lim_{x\rightarrow x_{0-0} } f(x) = M
Итак f(x_{0}-0)= \sup f(x), a\leqslant x<x_{0} .
Аналогично доказываем, что функция имеет в точке x_{0}\in [a;b) предел справа причем f(x_{0}+0)=\inf f(x), x_{0}<x\leqslant b.
Следствие. Если функция f определена и монотонна на интервале (a;b), \forall\ x_{0}\in (a;b)\exists \ предел справа и слева, причем если f возрастает, то
f(x_{0}-0)=\lim\limits_{x\to x_{0}-0} f(x)  \leq\lim\limits_{x\to x_{0}+0} f(x)=f(x_{0}+0),
если убывает, то
f(x_{0}-0)=\lim\limits_{x\to x_{0}-0} f(x)  \geq\lim\limits_{x\to x_{0}+0} f(x)=f(x_{0}+0).

Литература

Тест

Тест по теме Пределы монотонных функций.

Желаем удачи!

Таблица лучших: Предел монотонной функции

максимум из 10 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Единственность предела функции, локальная ограниченность функции, имеющей предел

1. Единственность предела функции

Как мы говорили с Вами в прошлой статье, единственность предела следует из определения предела функции по Гейне. Однако давайте сформулируем и докажем теорему о единственности предела.

Теорема о единственности предела

Формулировка:

Если функция f(x) в точке a имеет предел, то этот предел единственный.

Доказательство:

Докажем методом от противного. Предположим, что \lim\limits_{x\rightarrow a } f(x) = b, \lim\limits_{x\rightarrow a } f(x) = c, b \neq c. Возьмём \varepsilon = \frac{|b-c|}{2}, по определению и свойству окрестности найдётся такая проколотая  
\delta-окрестность точки a (\dot{U}_{\delta }(a)), в которой одновременно будут выполнятся неравенства |f(x)-b|<\frac{|b-c|}{2}, |f(x)-c|<\frac{|b-c|}{2} , тогда в точках этой же окрестности |b-c|=|(b-f(x))+(f(x)-c)| \leq |f(x)-b|+|f(x)-c|< \frac{|b-c|}{2}+\frac{|b-c|}{2}=|b-c|. Получили противоречие |b-c| < |b-c|. Отсюда, функция f(x) в точке a имеет единственный предел.

2. Локальная ограниченность функции, имеющей предел

Теорема о локальной ограниченности функции, имеющей предел

Формулировка:

Если предел функции f(x) при x\rightarrow a равняется A, то найдётся окрестность точки a, во всех точках которой функция f(x) ограничена.

Доказательство:

Из определения предела по Коши получим: \forall \varepsilon >0  \exists \delta=\delta(\varepsilon) >0:\forall x\in \dot{U}_{\delta }(a)\Rightarrow |f(x)-A|<\varepsilon. Возьмём \varepsilon =1. Из условия теоремы следует существование окрестности \dot{U}_{\delta }(a). Следовательно, |f(x)-A|<1. Перепишем это следующим образом:A-1<f(x)<A+1. Легко видеть, что это и означает ограниченность функции f(x).

 Литература

Тест

Тест по теме Единственность предела, локальная ограниченность функции, имеющей предел.

Таблица лучших: Единственность предела

максимум из 17 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных