5.1 Дифференцируемость и производная

$\DeclareMathOperator{\tg}{tg} \DeclareMathOperator{\sign}{sign} \DeclareMathOperator{\sgn}{sgn}$ Определение 1. Пусть функция $f$ определена на интервале $(a, b)$ и точка $x_0 ∈ (a, b).$ Если существует конечный предел $\displaystyle  \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$, то он называется производной функции $f$ в точке $x_0$ и обозначается $f^\prime(x_0)$, или $\displaystyle \frac{df}{dx}(x_0),$ $Df(x_0).$

Определение 2. Пусть функция $f$ определена на интервале $(a, b)$ и точка $x_0 ∈ (a, b).$ Функцию $f$ будем называть дифференцируемой в точке $x_0,$ если существует такая постоянная $A$ (зависящая от $x_0$ и не зависящая от $x$), что справедливо равенство: $$f(x) − f (x_0) = A (x − x_0) + r(x), $$где $r(x) = \overline{o} (x − x_0) \: \: \: (x \to x_0).$

Короче определение дифференцируемости можно записать в следующем виде: $$f(x) − f (x_0) = A (x − x_0) + \overline{o} (x − x_0) \: \: \: (x \to x_0).$$
Покажем, что эти два определения эквивалентны в том смысле, что дифференцируемость функции равносильна существованию производной.

Теорема. Функция $f$ дифференцируема в точке $x_0 ∈ (a, b)$ тогда и только тогда, когда у $f$ существует производная в точке $x_0.$

Пусть $f$ дифференцируема в точке $x_0.$ Это означает, что $f(x) − f (x_0) = A (x − x_0) + \overline{o} (x − x_0),$ где $A$ не зависит от $x$. Отсюда получаем:
$$\displaystyle \frac{f(x)-f(x_0)}{x-x_0} = A+\frac{\overline{o} (x − x_0)}{x-x_0}.$$
Тогда, учитывая определение символа $\overline{o}$, имеем
$$\displaystyle \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}=A+\lim_{x\to x_0} \frac{\overline{o} (x − x_0)}{(x − x_0)} =A$$ т. е. существует $f^\prime(x_0) = A.$
Обратно, если существует $$\displaystyle \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = f^\prime(x_0),$$ то $$ \displaystyle \frac{f(x)-f(x_0)}{x-x_0} + f^\prime(x_0) = r_1(x),$$ где $r_1(x) \to 0 (x \to x_0)$. Отсюда следует, что $$ f(x) — f(x_0) = f^\prime(x_0)(x-x_0)+r_1(x)(x-x_0).$$ Обозначим $r(x)=r_1(x)(x-x_0).$ Тогда $r(x)=\overline{o}(x-x_0),$ т. е. $$ f(x) − f (x_0) = f^\prime(x_0)(x-x_0)+\overline{o}(x-x_0) \: \: \: (x\to x_0), $$ а это и означает, что $f$ дифференцируема в точке $x_0$, причем $A= f^\prime(x_0).$

Итак, условие дифференцируемости равносильно наличию производной. Смысл дифференцируемости состоит в том, что в некоторой окрестности точки $x_0$ функция $f$ представима в виде линейной функции $l(x)= f (x_0)+f (x_0) f^\prime(x-x_0)$ приближенно с точностью до величины бесконечно малой более высокого порядка, чем $(x-x_0) $ при $x\to x_0.$

Связь между дифференцируемостью и непрерывностью устанавливает следующая

Теорема. Если функция $f$ дифференцируема в точке $x_0$, то она непрерывна в этой точке.

Дифференцируемость $f$ означает, что
$$ f(x) − f (x_0) = A(x_0)(x-x_0)+\overline{o}(x-x_0) \: \: \: (x\to x_0). $$
Отсюда следует, что $\displaystyle \lim_{x\to x_0} (f(x)-f(x_0)) = 0$, т. е. $\displaystyle \lim_{x\to x_0} f(x)=f(x_0)$, и тем самым теорема доказана.

Обратное утверждение неверно. Именно из непрерывности функции $f$ не следует ее дифференцируемость. Примером может служить функция $f(x)=|x|,$ непрерывная в точке $x_0 = 0$, для которой выражение $$\displaystyle \frac{f(x)-f(x_0)}{x-x_0} = \frac{|x|}{x} = \sign x $$ не имеет предела $x\to 0$ и, следовательно, функция $f$ не имеет производной в точке $x_0 = 0$. Значит, $ f$ не является дифференцируемой в нуле.

Итак, непрерывность – это необходимое, но не достаточное условие дифференцируемости. Другими словами, если функция разрывна в точке $x_0$, то она недифференцируема в этой точке. Обратное неверно.

С геометрической точки зрения производная $f^\prime(x_0)$ представляет собой тангенс угла наклона касательной к графику функции $y = f(x)$ в точке $M_0(x_0, f (x_0))$. При этом касательной к графику функции $f$ в точке $M_0$ называется предельное положение секущей $M_0M$ при стремлении точки $M (x, f(x))$ вдоль кривой $y = f(x)$ к точке $M_0$. В самом деле, если функция  $f$ дифференцируема в точке $x_0$, то при стремлении $M$ к $M_0$ вдоль кривой $y = f(x)$ секущая $M_0M$ имеет тангенс угла наклона, равный $$ \displaystyle \tg\alpha(x) = \frac{f(x)-f(x_0)}{x-x_0}, $$ и при $ x \rightarrow x_0 $ точка $M$ стремится к $M_0$ вдоль кривой $y = f(x)$. Так как $$\displaystyle  \frac{f(x)-f(x_0)}{x-x_0} \to f^\prime(x_0)  \: \: \: (x\to x_0), $$ то $\tg\alpha(x) \to f^\prime(x_0) $ при $x\to x_0$, т. е. секущая стремится занять некоторое предельное положение, тангенс угла наклона $\alpha_0$ которого равен $f^\prime(x_0)$.Отсюда получаем уравнение касательной к графику дифференцируемой в точке $x_0$ функции $y = f(x):$ $$k(x)=f(x_0)+f^\prime(x_0) (x-x_0).$$

Примеры решения задач

  1. Найти производную $f(x) = \sin x $ в точке $x_0 = 0.$
    Решение

    Пример можно легко решить, пользуясь определением производной, а так же первым замечательным пределом:
    $ \displaystyle \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}= \lim_{x\to 0} \frac{\sin x — \sin 0}{x-0}=\lim_{x\to 0} \frac{\sin x }{x}=1.$

  2. Пусть $f(x) = x^{2}$ Тогда производная $f^\prime(x_0)$ равна?
    Решение

    $\displaystyle f^\prime(x_0) = \lim_{x\to x_0} \frac{x^2-x^2_0}{x-x_0} = \lim_{x\to x_0} \frac{(x-x_0)(x+x_0)}{x-x_0}=$
    $\displaystyle = \lim_{x\to x_0} (x+x_0) = 2x_0$

  3. Пусть $f(x) = \left|x \right |$ и если $x_0 \neq 0$ существует ли $f^\prime(x_0)$?
    Решение

    $f^\prime(x_0) = \sgn x_0$, где $\sgn$ обозначает функцию знака. А если $x_0 = 0$ $f^\prime_+(x_0)=1,$ $f^\prime_-(x_0)=-1,$ а следовательно $f^\prime(x_0)$ не существует.

  4. Найдите уравнение касательной к графику функции $y=e^{2x-3}$ в точке $x_0 = 5,$ а также угол наклона касательной в этой точке.
    Решение

    Известно, что уравнение касательной в точке имеет вид $l={f}\left(x_{0}\right)+{f}’\left(x_{0}\right)\left(x-x_{0}\right),$ причём ${f}’\left(x_{0}\right)=\mathrm{tg}\alpha,$ где $\alpha$ — угол наклона касательной.
    Находим значение касательной в точке 5, получаем ${f}^\prime\left(x\right)=2e^{2x-3},$ а в точке $x_{0}=5: \, {f}^\prime\left(5\right)=2e^{7} \Rightarrow$ $l = e^{7}+2e^{7}\left(x-5\right) =$
    $ -9e^{7}+2e^{7}x$, $\alpha = \mathrm{arctg}\left(2e^{7}\right).$

  5. Найдите по определению $\sin x.$ на множестве $\mathbb{R}$
    Решение

    Воспользуемся определением производной $(\sin x)^\prime:$
    $
    (\sin x)^\prime = \displaystyle \lim_{\Delta x\to 0} \frac{\sin(x+\Delta x)-\sin x}{\Delta x} = \\
    = \displaystyle \frac{2\sin \frac{\Delta x}{2}\cdot \cos(x+\frac{\Delta x}{2})}{\Delta x} = \\
    = \displaystyle \frac{\sin \frac{\Delta x}{2}}{\frac{\Delta x}{2}} \cdot \cos(x+\frac{\Delta x}{2})
    $
    Теперь сделаем подстановку $ \displaystyle \frac{\Delta x}{2} = t$ . При $\Delta x \to 0, $ $t \to 0.$ Применим первый замечательный предел:
    $ \displaystyle \lim_{\Delta x\to 0} \frac { \sin \frac{\Delta x}2}{\frac{\Delta x}2} = \lim_{t\to 0} \frac{\sin t}{t} = 1.$
    Сделаем такую же подстановку $\displaystyle \frac{\Delta x}{2} = t$ и используем свойство непрерывности:
    $\displaystyle \lim_{\Delta x\to 0} \left ( \cos x + \frac{\Delta x}{2} \right) = \lim_{t\to 0} \cos (x+t)= \cos x.$

Смотрите также

  1. Тер-Крикоров А. М., Шабунин М.И. Курс математического анализа: Учеб. пособие для вузов. – 3-е изд., исправл. / А. М. Тер-Крикоров, М.И. Шабунин. – Москва: ФИЗМАТЛИТ, 2001. – 672 с. — с. 123-133.
  2. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: учеб. пособие для ун-тов и пед. ин-тов. Т. 1 / Г. М. Фихтенгольц. — 5-е изд., стереотип. — Москва: Физматгиз, 1962. — 607 с. — с. 186-214.
  3. Кудрявцев Л. Д. Курс математического анализа : учебник для вузов: В 3 т. Т. 1. Дифференциальное и интегральное исчисления функций одной переменной / Л. Д. Кудрявцев. — 5-е изд., перераб. и доп. — Москва: Дрофа, 2003. — 703 с. — с.271-280.

Дифференцируемость и производная

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме «Дифференцируемость и производная».

6.2 Интегрирование по частям и замена переменной

Теорема (формула интегрирования по частям).
Пусть функции $u(x)$ и $v(x)$ дифференцируемы на интервале $I$. Если одна из функций $u(x)v'(x)$ или $u'(x)v(x)$ имеет первообразную на интервале $I$, то на этом интервале имеет первообразную и другая функция, причем справедливо равенство $$\begin{equation}\label{eq:exp1}\int u(x)v'(x)dx=u(x)v(x)-\int u'(x)v(x)dx\end{equation}.$$

Доказательство сразу следует из правила дифференцирования произведения. Действительно, пусть $u(x)v'(x)$ имеет первообразную. Тогда, по правилу дифференцирования произведения, имеем $$[u(x)v(x)]’=u'(x)v(x)+u(x)v'(x).$$
Отсюда получаем, что $u'(x)v(x)$ является разностью двух производных функций, т. е. разностью двух функций, имеющих первообразные. Поэтому она сама также является производной, т. е. имеет первообразную, и справедливо равенство $\eqref{eq:exp1}$.

Замечание 1.
Коротко правило интегрирования по частям может быть записано так:
$$\int udv=uv-\int vdu.$$
Действительно, в этой записи используется формула для вычисления дифференциала функции $du(x)=u'(x)dx$.

Замечание 2.
Если одна из функций дифференцируема, а другая имеет первообразную, то их произведение (производной на функцию, имеющую первообразную) не обязано иметь первообразную. Такой пример приводится сразу после этого замечания. Поэтому в формулировке теоремы нужно предполагать наличие первообразной у одной из функций $u'(x)v(x)$ или $u(x)v'(x)$.

Утверждение.
Существуют дифференцируемая функция $u$ и имеющая первообразную функция $v$, такие, что $u’v$ не имеет первообразной.

Достаточно показать, что квадрат функции, имеющей первообразную, может не иметь первообразной.
Положим $f(x)=|x|^\alpha \sin\displaystyle\frac{1}{x}$, $x\neq0$, $f(0)=0$. При $\alpha>1$ функция $f$ дифференцируема на $\mathbb{R}$ и ее производная равна
$$\begin{equation*}f'(x) = \begin{cases}\alpha|x|^{\alpha-1}\sin\displaystyle\frac{1}{|x|}-|x|^{\alpha-2}\cos\displaystyle\frac{1}{x},\;  x\neq0, \\ 0,\;  x=0. \end{cases}\end{equation*}$$
Поскольку функция $\alpha|x|^{\alpha-1}\sin\displaystyle\frac{1}{x}\equiv\varphi(x) (x\neq0)$, $\varphi(0) = 0$ непрерывна на $\mathbb{R}$, а значит, имеет первообразную на $\mathbb{R}$, то функция
$$v(x)\equiv|x|^{\alpha-2}\cos\displaystyle\frac{1}{x}=\varphi(x)-f'(x) (x\neq0),\;\; v(0) = 0,$$
имеет первообразную на $\mathbb{R}$ как разность двух функций — $\varphi(x)$ и $f'(x)$, имеющих первообразные на $\mathbb{R}$.
Покажем, что при надлежащем выборе числа $\alpha>1$ функция $v^2(x)$ не имеет первообразной на $\mathbb{R}$. Предположим противное. Пусть существует такая дифференцируемая на $\mathbb{R}$ функция $F$, что для всех $x\in \mathbb{R}$ справедливо равенство
$$F'(x)=v^2(x)=|x|^{2(\alpha-2)}\cos^2\displaystyle\frac{1}{x},\;\; (x\neq0),\;\; F'(0)=0.$$
Для $k = 1, 2, \ldots$ обозначим
$$[a_k, b_k] = \left[\displaystyle\frac{4}{(4k+1)\pi}, \displaystyle\frac{4}{(4k-1)\pi}\right].$$
Если $x\in[a_k, b_k]$, то
$$\displaystyle\frac{1}{x}\in\left[\displaystyle\frac{(4k-1)\pi}{4}, \displaystyle\frac{(4k+1)\pi}{4}\right], \\ \displaystyle\frac{2}{x}\in\left[\displaystyle\frac{(4k-1)\pi}{4}, \displaystyle\frac{(4k+1)\pi}{4}\right]=\left[2k\pi-\displaystyle\frac{\pi}{2}, 2k\pi+\displaystyle\frac{\pi}{2}\right].$$
Поэтому для $x\in[a_k, b_k]$ имеем
$$\cos^2\displaystyle\frac{1}{x}=\displaystyle\frac{1+\cos\displaystyle\frac{2}{x}}{2}\geqslant\displaystyle\frac{1}{2},$$
так что $F'(x)\geqslant\displaystyle\frac{1}{2}x^{2(\alpha-2)}, x\in[A_k, b_k]$. По теореме Лагранжа получим
$$F(b_k)-F(a_k)=F'(\xi_k)(b_k-a_k)\geqslant\displaystyle\frac{1}{2}\xi^{2(\alpha-2)}_k(b_k-a_k)\geqslant\displaystyle\frac{b_k-a_k}{2}b^{2(\alpha-2)}_k,$$
где $\xi_k\in[a_k, b_k]$, а число $\alpha>1$ будет выбрано так, что $\alpha<2$. Отсюда получим
$$F(a_k)\leqslant F(b_k)-\displaystyle\frac{b_k-a_k}{2}b^{2(\alpha-2)}_k.$$
Заметим, что отрезки $[a_k, b_k]$ попарно не пересекаются и, так как $F'(x)\geqslant0$, то функция $F$ не убывает. Значит,
$$F(b_{k+1})\leqslant F(a_k)\leqslant F(b_k)-\displaystyle\frac{b_k-a_k}{2}b^{2(\alpha-2)}_k.$$
Отсюда следует, что
$$\begin{equation}\label{eq:exp2}F(b_{k+1})\leqslant F(b_1)-\displaystyle\frac{1}{2}\sum^{k}_{s=1}(b_s-a_s)b^{2(\alpha-2)}_s.\end{equation}$$
Оценим последнюю сумму справа. Имеем
$$b_s-a_s=\displaystyle\frac{8}{\pi}\displaystyle\frac{1}{(4s+1)(4s-1)},$$
так что
$$\sum^{k}_{s=1}(b_s-a_s)b^{2(\alpha-2)}_s=\\=c_s\sum^{k}_{s=1}\displaystyle\frac{1}{(4s+1)(4s-1)}\left(\displaystyle\frac{1}{4s-1}\right)^{2(\alpha-2)}\geqslant c’_s\sum^{k}_{s=1}\displaystyle\frac{1}{s^{2\alpha-2}}.$$
Если $2\alpha-2\leqslant1$, т. е. $\alpha\leqslant\displaystyle\frac{3}{2}$, то $\sum\limits^k_{s=1}\displaystyle\frac{1}{s^{2\alpha-2}}\rightarrow\infty(k\rightarrow\infty)$. Поэтому из $\eqref{eq:exp2}$ следует, что $F(b_{k+1})\rightarrow-\infty$ при $k\rightarrow\infty$. Но поскольку $b_{k+1}\rightarrow+0 (k\rightarrow\infty)$, то это противоречит непрерывности функции $F$ в точке $x_0=0$ справа, которая вытекает из дифференцируемости функции $F$ в нуле.

Пример 1.
$\int x e^x dx=\begin{bmatrix}u=x, & dv=e^x dx\\du=dx, & v=e^x\end{bmatrix}=x e^x-\int e^x dx=x e^x-e^x+C.$

Пример 2. 
$\int x\cos x dx=\begin{bmatrix}u=x, & dv=\cos x dx\\du=dx, & v=\sin x\end{bmatrix}=\\=x\sin x-\int\sin x dx=x\sin x+\cos x+C.$

Пример 3. 
$\int x\ln x dx=\begin{bmatrix}u=\ln x, & dv=x dx\\du=\displaystyle\frac{dx}{x}, & v=\displaystyle\frac{x^2}{2}\end{bmatrix}=\\=\displaystyle\frac{x^2}{2}\ln x-\displaystyle\frac{1}{2}\int x dx=\displaystyle\frac{x^2}{2}\ln x-\displaystyle\frac{x^2}{4}+C.$

Следующий пример показывает такой способ применения формулы интегрирования по частям, когда в правой части появляется такой же интеграл, как и в левой части. Тогда искомый интеграл может быть найден из полученного равенства.

Пример 4. 
$\int e^x\cos xdx=\begin{bmatrix}u=e^x, & dv=\cos xdx\\du=e^x dx, & v=\sin x\end{bmatrix}=\\=e^x\sin x-\int e^x\sin xdx=e^x\sin x-\begin{bmatrix}u=e^x, & dv=\sin xdx\\du=e^x dx, & v=-\cos x\end{bmatrix}=\\=e^x\sin x+e^x\cos x-\int e^x\cos xdx.$
Из этого равенства находим
$$\int e^x\cos xdx=\displaystyle\frac{e^x}{2}[\sin x+\cos x] + C.$$

Теорема (о замене переменной в интеграле). Пусть функция $f$ имеет первообразную на интервале $I$, т. е.
$$\int f(t)dt=F(t)+C.$$
Пусть, далее, функция $\varphi$ дифференцируема на интервале $\Delta$ и $\varphi(\Delta)\subset I$. Тогда справедливо равенство
$$\int f(\varphi(x))\varphi'(x)dx=F(\varphi(x))+C.$$

Действительно, по правилу дифференцирования сложной функции имеем
$$[F(\varphi(x))]’=F'(\varphi(x))\varphi'(x)=f(\varphi(x))\varphi'(x).$$

Пример 1. $\int\sin^3 xdx=\int\sin x(1-\cos^2 x)dx=[\cos x = t, dt =-\sin xdx]=\\=\int(t^2-1)dt=\displaystyle\frac{t^3}{3}-t+C=\displaystyle\frac{\cos^3 x}{3}-\cos x+C.$

Пример 2. $\int\displaystyle\frac{dx}{1+e^x}=\begin{bmatrix}\text{преобразуем} & \displaystyle\frac{1}{1+e^x}=\displaystyle\frac{1}{e^x(e^-x+1)}=\displaystyle\frac{e^{-x}}{1+e^{-x}}\\ \text{положим} & 1+e^{-x}=t, dt=-e^{-x}dx\end{bmatrix}=-\int\displaystyle\frac{dt}{t}=\\=-\ln|t|+C=-\ln(1+e^{-x})+C=-\ln\displaystyle\frac{1+e^x}{e^x}+C=x-\ln(1+e^x)+C.$

Замечание. Мы использовали равенство $\int\displaystyle\frac{dx}{x}=\ln|x|+C$. Это равенство следует применять отдельно для промежутков $(0, +\infty)$ и $(-\infty, 0)$.
При $x>0$ оно справедливо по той причине, что $|x|=x,$ $(\ln x+C)’=\displaystyle\frac{1}{x}$.
Если же $x<0$, то $|x|=-x$, $\ln(-x)+C)’=\displaystyle\frac{1}{-x}\cdot(-1)=\displaystyle\frac{1}{x}$, так что и в этом случае равенство верно.

Итак, если исходный интеграл представлен в виде $\int f(\varphi(x))\varphi'(x)dx$, то, выполняя замену переменной $t=\varphi(x)$, мы приходим к интегралу $\int f(t)dt$. Часто замену переменной в интеграле $\int g(x)dx$ применяют в виде $x = \psi(t)$, затем вычисляют интеграл по $t$, а чтобы вернуться к старой переменной $x$, нужно выразить новую переменную $t$ через $x$.

Пример. Пусть $I=\int\sqrt{1-x^2}dx$.
Для вычисления этого интеграла положим $x=\sin t$. Тогда
$$dx=\cos tdt, \sqrt{1-x^2}=\sqrt{1-\sin^2 t}=\sqrt{\cos^2 t}=\cos t.$$
Подставляя это в исходный интеграл, получаем
$$I=\int\cos^2 tdt=\int\displaystyle\frac{1+\cos 2t}{2}dt=\displaystyle\frac{t}{2}+\displaystyle\frac{\sin 2t}{4}+C.$$
Из равенства $x=\sin t$ имеем $t=\arcsin x$, так что
$$I=\displaystyle\frac{\arcsin x}{2}+\displaystyle\frac{x\sqrt{1-x^2}}{2}+C.$$
Вычислим этот интеграл еще одним способом, основанным на применении формулы интегрирования по частям.
$$I=\int\sqrt{1-x^2}dx=\begin{bmatrix}u=\sqrt{1-x^2}, & dv=dx\\du=-\displaystyle\frac{x}{\sqrt{1-x^2}}dx, & v=x\end{bmatrix}=\\=x\sqrt{1-x^2}+\int\displaystyle\frac{x^2}{\sqrt{1-x^2}}dx=\\=x\sqrt{1-x^2}+\int\displaystyle\frac{x^2-1+1}{\sqrt{1-x^2}}dx=x\sqrt{1-x^2}-I+\int\displaystyle\frac{dx}{\sqrt{1-x^2}}.$$
Воспользовавшись теперь равенством $\int\frac{dx}{\sqrt{1-x^2}}=\arcsin x+c$, вытекающим из того, что $(\arcsin x+C)’=\displaystyle\frac{1}{\sqrt{1-x^2}}$, получим $I=x\sqrt{1-x^2}-I+\arcsin x$. Отсюда следует
$$I=\displaystyle\frac{1}{2}[x\sqrt{1-x^2}+\arcsin x]+C.$$

Решение примеров

Интегрирование по частям:

  1. $\int\text{arctg}\:xdx$
    Решение

    $\int\text{arctg}\:xdx=\begin{bmatrix}\text{arctg}\:{x}=u, du=\displaystyle\frac{dx}{1+x^2}\\dx=dv, v=x\end{bmatrix}=x\:\text{arctg}\: {x}-\int\displaystyle\frac{xdx}{1+x^2}=\\=x\:\text{arctg}\: {x}-\displaystyle\frac{1}{2}\int\displaystyle\frac{dx^2}{1+x^2}=x\:\text{arctg}\: {x}-\displaystyle\frac{1}{2}\ln(1 + x^2) + C.$

  2. $\int x\sin{x}dx$
    Решение

    $\int x\sin{x}dx=\begin{bmatrix}x=u, du=dx\\ \sin{x}=dv, v=-\cos{x}\end{bmatrix}=-x\cos{x}+\int\cos{x}dx=\\=-x\cos{x}+\sin{x}+C.$

  3. $\int xe^{x}dx$
    Решение

    $\int xe^{x}dx=\begin{bmatrix}u=x, du=dx\\dv=e^{x}dx, v=e^x\end{bmatrix}=xe^x-\int e^{x}dx=xe^x-e^x+C.$

Замена переменной:

  1. $\int\displaystyle\frac{dx}{\sqrt{e^x-1}}$
    Решение

    $\int\displaystyle\frac{dx}{\sqrt{e^x-1}}=\begin{bmatrix}\sqrt{e^x-1}=t, x=\ln(t^2+1)\\dx=\displaystyle\frac{2tdt}{t^2+1}\end{bmatrix}=2\int\displaystyle\frac{tdt}{t(t^2+1)}=\\=2\int\frac{dt}{t^2+1}=2\: \text{arctg}\: t+C.$

  2. $\int\displaystyle\frac{x^{2}dx}{5-x^6}$
    Решение

    $\int\frac{x^2dx}{5-x^6}=\begin{bmatrix}x^3=t\\dt=3x^2dx\\x^6=t^2\end{bmatrix}=\frac{1}{3}\int\frac{dt}{5-t^2}=\frac{1}{3}\int\frac{dt}{(\sqrt{5})^2-t^2}=\\=\frac{1}{6\sqrt{5}}\ln\left|\frac{\sqrt{5}+t}{\sqrt{5}-t}\right|+C=[t=x^3]=\frac{1}{6\sqrt{5}}\ln\left|\frac{\sqrt{5}+x^3}{\sqrt{5}-x^3}\right|+C.$

Интегрирование по частям и замена переменной

Пройдя этот тест, вы закрепите пройденный ранее материал по теме «Интегрирование по частям и замена переменной»

Таблица лучших: Интегрирование по частям и замена переменной

максимум из 18 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных
Литература

Смотрите также

  1. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: учеб. пособие для ун-тов и пед. ин-тов. Т. 2 / Г. М. Фихтенгольц. — 5-е изд., стереотип. — Москва: Физматгиз, 1970 (стр.23, 31)
  2. Тер-Крикоров А. М., Шабунин М. И. Курс математического анализа: Учеб. пособие для вузов. – 3-е изд., исправл. / А. М. Тер-Крикоров, М. И. Шабунин. – Москва: ФИЗМАТЛИТ, 2001  (стр. 277, 281)
  3. Кудрявцев Л. Д. Курс математического анализа : учебник для вузов: В 3 т. Т. 1. Дифференциальное и интегральное исчисления функций одной переменной / Л. Д. Кудрявцев. — 5-е изд., перераб. и доп. — Москва: Дрофа, 2003 (стр. 461, 464)

5.7.1. Формула Тейлора с остатком в форме Пеано

Пусть функция $f$ определена на интервале $(a, b)$. Предположим, что в каждой точке $x \in \left(a,b\right)$ у функции $f$ существует производная $f^{\prime}\left(x\right)$. Если функция $f^\prime$ в некоторой точке $x_{0} \in \left(a, b \right)$ имеет производную, то ее называют второй производной функции $f$ в точке $x_{0}$ и обозначают $f^{\prime \prime}\left(x_0\right)$. По индукции определяются и производные высших порядков. Именно, $f^{\left(k\right)}\left(x\right)=f^{\left(k-1\right)^{\prime}}\left(x\right)$

Определение: Для $k \in \mathbb {N}$ и отрезка $\left[a, b\right]$ через $C^{k}\left(\left[a, b\right]\right)$ обозначается совокупность всех функций $f$, определенных на $\left[a, b\right]$ и таких, что $k$-я производная $f^{\left(k\right)}$ непрерывна на $\left[a, b\right]$. При этом в точках $a$ и $b$ производные понимаются как односторонние.

Напомним определение дифференцируемости. Дифференцируемой в точке $x_{0}$ мы называли такую функцию $f$, что в окрестности точки $x_{0}$ она представима в виде
$$f\left(x\right) = f \left(x_0\right) + f^{\prime}\left(x_0\right)\left(x − x_{0}\right) + \left(x \to x_{0}\right) \bar{o}\left(\left(x − x_{0}\right)^n\right) \left(x \to x_{0}\right) $$
т.е. $f\left(x\right) = P_{1}\left(x\right) + \bar{o}\left(x − x_{0}\right)$, где $P_{1}\left(x\right)$ – многочлен первого порядка, а остаток $\bar{o}\left(x − x_{0}\right)$ мал по порядку по сравнению с $x − x_{0}$.

Поставим следующую задачу. Пусть функция $f$ определена в некоторой окрестности точки $x_{0}$. Можно ли функцию $f$ в этой окрестности представить в виде суммы многочлена $P_{n}\left(x\right)$ степени не выше заданного натурального $n$, и остатка $r_{n}\left(x\right)$, малого по сравнению с $\left(x − x_{0}\right)^n$, т.е. $r_{n}\left(x\right) = \bar{o}\left(\left(x − x_{0}\right)^{n}\right)\left(x \to x_{0}\right)$? Другими словами, мы хотим, чтобы имело место равенство
$$f\left(x\right) = P_{n}\left(x\right) + \bar{o}\left(\left(x − x_{0}\right)^n\right)\left(x \to x_{0}\right).$$
При $n = 1$ это возможно, если функция $f$ дифференцируема в точке $x_{0}$. Это сразу следует из определения дифференцируемости.

Лемма: Пусть функция $ \varphi $ определена на интервале $I$ и всюду на этом интервале имеет производную до порядка $n − 1$ включительно, а в точке $x_{0} \in I$ имеет производную $ \varphi^{\left(n\right)}\left(x_{0}\right)$, причем $$ \varphi\left(x_{0}\right) = \varphi^{\prime}\left(x_{0}\right)=\ldots=\varphi^{\left(n\right)}\left(x_{0}\right) = 0.$$ Тогда $ \varphi\left(x\right) = \bar{o}\left(\left(x − x_{0}\right)^{n}\right)\left(x \to x_{0}\right)$

Применим индукцию по $n$. При $n = 1$ из дифференцируемости $\varphi$ в точке $x_{0} \in I$ получаем $$ \varphi\left(x\right) = \varphi \left(x_{0}\right) + \varphi^{\prime}\left(x_{0}\right)\left(x − x_{0}\right) + \bar{o}\left(x − x_{0}\right),$$ а из условия леммы $ \varphi\left(x_{0}\right) = \varphi^{\prime}\left(x_{0}\right) = 0 $ следует, что $\varphi \left(x\right) = \bar{o}\left(x − x_{0}\right).$
Предположим, что лемма верна для некоторого натурального $n$, и покажем, что она справедлива и для $n + 1$. Итак, согласно предположению индукции, $\varphi\left(x\right) = \underset{\left(x \to x_{0}\right)}{\bar{o}\left(\left(x − x_{0}\right)^n\right)}$ и $\varphi^{\left(n+1\right)} \left(x_{0}\right) = 0$. Тогда, по теореме Лагранжа, $\varphi\left(x\right) − \varphi \left(x_{0}\right) = \varphi^{\prime}\left(\xi\right)\left(x − x_{0}\right)$, где точка $\xi$ находится между $x$ и $x_{0}$. Обозначим $\psi \left(x\right) = \varphi^{\prime}\left(x\right)$. Тогда, по предположению индукции, $ \psi\left(x_{0}\right) = \psi^{\prime}\left(x_{0}\right)=\ldots=\psi^{\left(n\right)}\left(x_{0}\right) = 0$ и $\psi^{\left(n\right)}\left(x\right)=\underset{\left(x\to x_{0}\right)}{\bar{o}\left(\left(x− x_{0}\right)^n\right)}$. Поэтому $$ \frac{\lvert \varphi\left(x\right) \rvert}{\lvert x-x_{0} \rvert ^{n+1}} = \frac {\lvert \varphi ^{\prime} \left(\xi\right) \rvert}{\lvert x-x_{0} \rvert ^{n}} \leqslant \frac{\lvert \psi \left(\xi\right) \rvert}{\lvert \xi-x_{0} \rvert ^{n}} \to 0 \mbox{ при } x \to x_{0}. $$ Это следует из предположения индукции и из того, что $\xi $ находится между $x$ и $x_{0}$. Таким образом, получили, что $\varphi\left(x\right) = \bar{o}\left(\left(x − x_{0}\right)^{n+1}\right)$.

Вернемся к нашей задаче представления функции $f$ в виде $$f\left(x\right) = P_{n}\left(x\right)+\bar{o}\left(\left(x-x_{0}\right)^n\right).$$ Из доказанной леммы сразу следует, что если мы найдем многочлен $P_{n}\left(x\right)$, такой, что $P_{n}\left(x_{0}\right) = f\left(x_{0}\right)$, $P_{n}^{\prime}\left(x_{0}\right) = f^{\prime}\left(x_{0}\right)$, $\ldots$, $P_{n}^{\left(n\right)}\left(x_{0}\right) = f^{\left(n\right)}\left(x_{0}\right)$, то функция $\varphi\left(x\right) = f\left(x\right) − P_{n}\left(x\right)$ будет удовлетворять условиям $\varphi\left(x_{0}\right) =\varphi^{\prime}\left(x_{0}\right) = \ldots = \varphi^{\left(n\right)}\left(x_{0}\right) = 0$, и, в силу леммы, $\varphi\left(x\right) = \bar{o} \left(\left(x − x_{0}\right)^n\right)$, т.е. наша задача будет решена, если мы найдем многочлен $P_{n}\left(x\right)$.

Многочлен $P_{n}\left(x\right)$ будем искать в виде $$P_{n}\left(x\right) = c_0 + c_{1}\left(x-x_{0}\right) + \ldots + c_{n}\left(x-x_{0}\right)^n,$$ т.е. по степеням $x − x_{0}$, где $c_0, c_1, \ldots, c_n$ – коэффициенты. Найдем производные многочлена $P_n$. Имеем

$ P_n \left(x_0\right) = c_0, {} \\ {} P_n^{\prime}\left(x\right) = c_1 + 2 \cdot c_2 \left(x-x_0\right)+\ldots+n\cdot c_n\left(x- x_0\right)^{n-1}, {} \\ {} P_n^{\prime}\left(x_0\right) = c_1, {} \\ {} P_n^{\prime \prime}\left(x\right) = 2\cdot c_2 + 3\cdot2\cdot c_3\left(x-x_0\right)+\ldots+n \cdot \left(n-1\right)\cdot c_n\left(x-x_0\right)^{n-2}, {} \\ {} P_n^{\prime \prime}\left(x_0\right)=2c_2, {} \\ {} \cdots {} \\ {} P_n^{\left(k\right)}\left(x\right) = k\cdot\left(k-1\right)\cdot \ldots \cdot 2 \cdot 1\cdot c_k + \left(k+1\right) \cdot\ldots \cdot2 \cdot 1\cdot c_{k+1}\left(x-x_0\right)+\ldots +{} \\ {}+ n\cdot\left(n-1\right)\cdot\ldots\cdot \left(n-k+1\right)\cdot c_n\left(x-x_0\right)^{k}, {} \\ {} \cdots \\ {} P_n^{\left(k\right)}\left(x_0\right) = k!\cdot c_k \left(k=0,1,\ldots,n\right).$

Таким образом, $P_n^{\left(k\right)}\left(x_0\right) = k!\cdot c_k$, откуда $c_k = \frac{\displaystyle P_n^{\left(k\right)}\left(x_0\right)}{\displaystyle k!}$. Итак, если мы хотим, чтобы при всех $k=0,1,\ldots,n$ были выполнены равенства $f^{\left(k\right)}\left(x_0\right)=P_n^{\left(k\right)}\left(x_0\right)$, то коэффициенты $c_k$ многочлена $P_n\left(x\right)$ должны быть равными $c_k = \frac {\displaystyle f^{\left(k\right)}\left(x_0\right)}{\displaystyle k!} \left(k = 0,1,\ldots,n\right)$, т.е. $$P_n\left(x\right) = f\left(x_0\right) + \frac {f^{\prime}\left(x_0\right)}{1!}\left(x-x_0\right) + \ldots + \frac {f^{\left(n\right)}\left(x_0\right)}{n!}\left(x-x_0\right)^n.$$ В этом случае функция $\varphi \left(x\right) = f\left(x\right) — P_n\left(x\right)$ удовлетворяет условиям леммы и, следовательно, $\varphi \left(x\right) = \bar{o}\left(\left(x-x_0\right)^n\right)$, т.е. мы получим нужное представление $$ f\left(x\right) = P_n\left(x\right) + \bar{o}\left(\left(x-x_0\right)^n\right).$$

Итак, мы доказали следующую теорему.

Теорема: Пусть функция $f$ определена в некоторой окрестности $I$ точки $x_0$ и имеет в этой окрестности производные до $(n − 1)$-го порядка включительно, а в точке $x_0$ имеет производную $n$-го порядка. Тогда справедливо равенство $$ f\left(x\right) = f\left(x_0\right)+\frac {f^{\prime}\left(x_0\right)}{1!}\left(x-x_0\right) + \frac {f^{\prime \prime}\left(x_0\right)}{2!}\left(x-x_0\right)^2 + \ldots +{} \\ {}+ \frac {f^{\left(n\right)}\left(x_0\right)}{n!}\left(x-x_0\right)^n + \bar{o}\left(\left(x-x_0\right)^n\right) \text{ при } x \to x_0.$$

Доказанное в этой теореме равенство называется формулой Тейлора с остатком в форме Пеано. Многочлен $$ P_n\left(x\right) = f\left(x_0\right)+\frac {f^{\prime}\left(x_0\right)}{1!}\left(x-x_0\right) + \frac {f^{\prime \prime}\left(x_0\right)}{2!}\left(x-x_0\right)^2 + \ldots +{} \\ {}+ \frac {f^{\left(n\right)}\left(x_0\right)}{n!}\left(x-x_0\right)^n $$ называется многочленом Тейлора функции $f$ с центром в точке $x_0$, а последнее слагаемое в формуле Тейлора $\bar{o}\left(\left(x − x_0\right)^n\right)$ — остатком формулы Тейлора в форме Пеано.

Докажем единственность многочлена Тейлора. Предположим, что существует два представления – $f\left(x\right) = P_n\left(x\right) + \bar{o}\left(\left(x-x_0\right)^n\right)$ и $f\left(x\right) = Q_n\left(x\right) + \bar{o}\left(\left(x-x_0\right)^n\right)$, где $P_n$ и $Q_n$ – многочлены степени не выше, чем $n$. Покажем, что $P_n \equiv Q_n$, т.е. коэффициенты многочленов $P_n$ и $Q_n$ совпадают. Имеем $P_n\left(x\right)-Q_n\left(x\right) = \bar{o}\left(\left(x-x_0\right)^n\right)$, т.е. $R_n\left(x\right) \equiv P_n\left(x\right)-Q_n\left(x\right) = \bar{o}\left(\left(x-x_0\right)^n\right)$, где степень $R_n$ не превосходит $n$. Покажем, что все коэффициенты $b_k$ многочлена $R_n\left(x\right) \equiv b_0 + b_1 \left(x-x_0\right) + \ldots +b_n\left(x-x_0\right)^n$ равны нулю. Из равенства $$b_0 + b_1 \left(x-x_0\right) + \ldots +b_n\left(x-x_0\right)^n = \bar{o}\left(\left(x-x_0\right)^n\right),$$ устремляя $x \to x_0$ и учитывая, что правая часть стремится к нулю, получаем, что $b_0 = 0$. Следовательно, $$b_1 \left(x-x_0\right) + \ldots +b_n\left(x-x_0\right)^n = \bar{o}\left(\left(x-x_0\right)^n\right).$$ Разделив это равенство на $x − x_0$, получим $$ b_1 + b_2 \left(x-x_0\right) + \ldots +b_n\left(x-x_0\right)^{n-1} = \bar{o}\left(\left(x-x_0\right)^{n-1}\right),$$ откуда, устремляя $x \to x_0$, получим, что $b_1 = 0$. Продолжая этот процесс, получим, что $b_0 = b_1 = \ldots = b_n = 0$, т.е. $R_n = 0$, что и требовалось.

Замечание: Если функция $f$ является многочленом степени $n$, то она совпадает со своим многочленом Тейлора порядка $n$ и выше. В самом деле, если $f\left(x\right) = P_n\left(x\right)$, то для $n \leqslant m$ будем иметь $$f\left(x\right) = P_n\left(x\right) = P_m\left(x\right) + 0 = P_m\left(x\right) + r_m\left(x\right),$$ где $r_m\left(x\right) = 0 = \bar{o}\left(\left(x-x_0\right)^m\right) \left(x \to x_{0}\right)$. Значит, в силу единственности многочлена Тейлора, $P_m\left(x\right) \equiv P_n\left(x\right)$ – многочлен Тейлора.

Примеры решения задач

  1. Пусть $f\left(x\right) = x^2 − 3x + 1$. Требуется построить формулу Тейлора для функции $f$ порядка $n = 2$ в окрестности точки $x_0 = 1$.
    Решение

    Можно было бы вычислить $f\left(1\right), f^{\prime}\left(1\right), f^{\prime \prime}\left(1\right)$ и построить многочлен Тейлора согласно общей формуле $$ P_2\left(x\right) = f\left(1\right) + \frac {f^{\prime}\left(1\right)}{1!}\left(x-1\right) + \frac {f^{\prime \prime}\left(1\right)}{2!}\left(x-1\right)^2,$$ и тогда получили бы $$ f\left(x\right) = x^2 — 3x + 1 = f\left(1\right) + \frac {f^{\prime}\left(1\right)}{1!}\left(x-1\right) + \frac {f^{\prime \prime}\left(1\right)}{2!}\left(x-1\right)^2 + r_2\left(x\right), $$ где $r_2\left(x\right) = f\left(x\right) — P_2\left(x\right) = \bar{o}\left(\left(x-1\right)^2\right) \left(x \to 1\right)$. На самом деле оказывается, что $r_2\left(x\right) ≡ 0$. Действительно, данный пример можно решить проще, если многочлен $x^2−3x+1$ расписать по степеням $x−1$, а именно: $x^2−3x+1 = \left(\left(x-1\right) + 1\right)^2-3\left(\left(x-1\right)+1\right)+1 = $$ $$= -1-\left(x-1\right)+\left(x-1\right)^2 = P_2 \left(x\right).$ Справа мы получили многочлен по степеням $x−1$. Данная функция $x^2 − 3x + 1$ представляет собой многочлен. В силу единственности, это и есть многочлен Тейлора для функции в окрестности точки $x_0 = 1$.

  2. Построить формулу Тейлора для функции $f\left(x\right)=\sin x$ порядка $n = 3$ в окрестности точки $x_0 = \frac{\pi}{2}$.
    Решение

    Записываем формулу Тейлора по определению, вычисляя предварительно $f\left(\frac{\displaystyle \pi}{\displaystyle 2}\right), f^{\prime}\left(\frac{\displaystyle \pi}{\displaystyle 2}\right), f^{\prime \prime}\left(\frac{\displaystyle \pi}{\displaystyle 2}\right), f^{\left(3\right)}\left(\frac{\displaystyle \pi}{\displaystyle 2}\right)$.
    $f\left(\frac{\displaystyle \pi}{\displaystyle 2}\right) = 1,$ $f^{\prime}\left(\frac{\displaystyle \pi}{\displaystyle 2}\right) = \cos\frac{\displaystyle \pi}{\displaystyle 2} = 0,$ $f^{\prime \prime}\left(\frac{\displaystyle \pi}{\displaystyle 2}\right) = -\sin\frac{\displaystyle \pi}{\displaystyle 2} = -1,$ $f^{\left(3\right)}\left(\frac{\displaystyle \pi}{\displaystyle 2}\right) = -\cos\frac{\displaystyle \pi}{\displaystyle 2} = 0.$ С помощью полученных данных построим многочлен Тейлора третьего порядка $ P_3\left(x\right) = 1 + \frac {\displaystyle 0}{\displaystyle 1!}\left(x-\frac{\displaystyle \pi}{\displaystyle 2}\right) + \frac {\displaystyle -1}{\displaystyle 2!}\left(x-\frac{\displaystyle \pi}{\displaystyle 2}\right)^2 + \frac {\displaystyle 0}{\displaystyle 3!}\left(x-\frac{\displaystyle \pi}{\displaystyle 2}\right)^3.$ Тогда формула Тейлора будет выглядеть следующим образом: $$f\left(x\right) = 1-\frac{\displaystyle 1}{\displaystyle 2}\left(x-\frac{\displaystyle \pi}{\displaystyle 2}\right)^2 + \bar{o} \left(\left(x − x_{0}\right)^2\right).$$

  3. Вычислить предел $\lim\limits_{x\to 0}\frac{\displaystyle\sqrt{1+x}-e^x+x^2}{\displaystyle\sin x}$, используя формулу Тейлора.
    Решение

    Разложим выражения $\sqrt{1+2x}$, $e^x$ и $\sin x$ по формуле Тейлора в окрестности точки $x_0 = 0$ порядка $n=1$: $$\sqrt {1+x}=\left(1+x\right)^{\frac{1}{2}}=1+\frac{1}{2}x+\bar{o}\left(x\right);$$ $$ e^x=1+x+\bar{o}\left(x\right).$$
    Используя эти разложения и заменив в знаменателе функцию $\sin x$ на эквивалентную ей в окрестности точки $x_0=0$ функцию $x$, получаем из исходной дроби следующую: $$\frac{1+\frac{\displaystyle 1}{\displaystyle 2}x-1-x+\bar{o}\left(x\right)}{x+\bar{o}\left(x\right)}.$$
    Тогда в пределе получаем выражение
    $$\lim\limits_{x\to 0} \frac {-\frac{\displaystyle x}{\displaystyle 2}+\bar{o}\left(x\right)} {x+\bar{o}\left(x\right)}.$$ Если поделить почленно числитель и знаменатель дроби на $x$, то получим $$\lim\limits_{x\to 0} \frac {-\frac{\displaystyle 1}{\displaystyle 2}+\frac{\displaystyle \bar{o}\left(x\right)}{\displaystyle x}} {1+\frac{\displaystyle \bar{o}\left(x\right)}{\displaystyle x}}.$$ Выражения вида $\frac{\displaystyle \bar{o}\left(x\right)}{\displaystyle x}$ в пределе дадут $0$. Тогда в ответе получаем $\frac{-1}{2}.$

Тест

Пройдите тест, чтобы проверить свои знания о многочлене Тейлора и формуле Тейлора с остатком в форме Пеано.

См. также:

Дифференцируемость функции в точке и существование частных производных

Дадим определение дифференцируемости функции в точке.
Определение. Функция $f \left( x \right) = f \left( x_1, \dots, x_n \right)$ называется дифференцируемой в точке $x^0 = \left( x_1^0, \dots, x_n^0 \right)$, если она определена в некоторой окрестности этой точки и существуют такие числа $A_1, \dots, A_n$, что $$f \left( x \right) — f \left( x^0 \right) = \sum\limits_{i = 1}^{n} A_i \left( x_i — x_i^0 \right) + o \left( \rho \left( x, x^0 \right) \right) \qquad (2)$$ при $x \to x^0$.
Теорема 1. Функция $f \left( x \right)$ дифференцируема в точке $x^0$ в том и только том случае, когда в некоторой окрестности точки $x^0$ функция $f \left( x \right)$ может быть представлена в следующем виде: $$f \left( x \right) = f \left( x^0 \right) + \sum\limits_{i = 1}^{n} f_i \left( x \right) \left( x_i — x_i^0 \right), \qquad (2)$$ где функции $f_i \left( x \right)$ непрерывны в точке $x^0$.

Доказательство показать

Упражнение 1. Пусть функции $f \left( x \right)$ и $\varphi \left( x \right)$ определены в окрестности точки $x^0 \in \mathbb{R}^n$, функция $f \left( x \right)$ дифференцируема в точке $x^0$ и $f \left( x^0 \right) = 0$, а функция $\varphi \left( x \right)$ непрерывна в точке $x^0$. Доказать, что функция $f \left( x \right) \varphi \left( x \right)$ дифференцируема в точке $x^0$.
Упражнение 2. Доказать, что функция $$\left( x + y \right) \left( x^3 + y^3 \right) ^{\frac{1}{3}}$$ дифференцируема в точке $\left( 0, 0 \right)$.
Указание. Воспользоваться результатом упр. 1.
Пример 1. Показать, что функция $$f \left( x, y \right) = \sqrt[3]{x^3 + y^4}$$дифференцируема в точке $\left( 0, 0 \right)$.
Решение показать

Пример 2. Показать, что функция $$f \left( x, y \right) = \sqrt[3]{x^3 + y^3}$$недифференцируема в точке $\left( 0, 0 \right)$.
Решение показать

Из теоремы 1 следует, что функция $f \left( x \right)$, дифференцируемая в точке $x^0$, непрерывна в этой точке. Обратное утверждение неверно: функция примера 2 непрерывна, но недифференцируема в точке $\left( 0, 0 \right)$.

Необходимое условие дифференцируемости функции в точке.

Теорема 2. Если функция $f \left( x \right)$ дифференцируема в точке $x^0 \in \mathbb{R}^n$, то она имеет в точке $x^0$ все частные производные $\frac{ \partial f }{ \partial x_i } \left( x^0 \right)$, $i = \overline{1, n}$, и $$f \left( x \right) — f \left( x^0 \right) = \\ = \sum\limits_{i = 1}^{n} \frac{ \partial f }{ \partial x_i } \left( x^0 \right) \left( x_i — x_i^0 \right) + o \left( \rho \left( x, x^0 \right) \right), x \to x^0. \qquad (6)$$

Доказательство показать

Функция примера 2 имеет в точке $\left( 0, 0 \right)$ обе частные производные первого порядка: $$\frac{ \partial f }{ \partial x } \left( 0, 0 \right) = \lim\limits_{x \to 0} \frac{ f \left( x, 0 \right) — f \left( 0, 0 \right) }{ x } = \\ = \lim\limits_{x \to 0} \frac{ \sqrt[3]{x^3} }{ x } = 1, \frac{ \partial f }{ \partial y } \left( 0, 0 \right) = 1.$$ Так как функция $f \left( x, y \right) = sqrt[3]{x^3 + y^3}$ примера 2 недиффиринцируема в точке $\left( 0, 0 \right)$, то этот пример показывает, что из существования частных производных в точке не следует дифференцируемость функции в этой точке. Существование частных производных функции в точке не гарантирует даже непрерывности функции в этой точке.
Так, функция $$f \left( x \right) = \begin{cases} \frac{2xy}{x^2+y^2}, & x^2 + y^2 > 0, \\ 0, & x = y = 0 \end{cases}$$ не имеет предела при $\left( x, y \right) \to \left( 0, 0 \right)$, а поэтому и не является непрерывной в точке $\left( 0, 0 \right)$. Тем не менее у этой функции в точке $\left( 0, 0 \right)$ существуют обе частные производные: $$\frac{ \partial f }{ \partial x } \left( 0, 0 \right) = \lim\limits_{x \to 0} \frac{ f \left( x, 0 \right) — f \left( 0, 0 \right) }{ x } = 0, \frac{ \partial f }{ \partial y } \left( 0, 0 \right) = 0.$$

Достаточные условия дифференцируемости функции в точке.

Теорема 3. Если все частные производные $\frac{ \partial f }{ \partial x_i }$, $i = \overline{1, n}$ определены в окрестности точки $x^0 \in \mathbb{R}^n$ и непрерывны в точке $x^0$, то функция $f \left( x \right)$ дифференцируема в точке $x^0$.

Доказательство показать

Непрерывность частных производных в точке не является необходимым условием дифференцируемости функции в этой точке.
Функция $$f \left( x, y \right) = \begin{cases} \left( x^2 + y^2 \right) \sin \frac{ 1 }{ \sqrt{ x^2 + y^2 } }, & x^2 + y^2 > 0, \\ 0, & x = y = 0, \end{cases}$$ дифференцируема в точке $\left( 0, 0 \right)$, так как $$f \left( x, y \right) = 0 \cdot x + 0 \cdot y + o \left( \sqrt{ x^2 + y^2 } \right), \left( x, y \right) \to \left( 0, 0 \right).$$ Но при $x^2 + y^2 > 0$ частная производная$$\frac{ \partial f }{ \partial x } \left( x, y \right) = 2x \sin \frac{ 1 }{ \sqrt{ x^2 + y^2 } } — \frac{ x }{ \sqrt{ x^2 + y^2 } } \cos \frac{ 1 }{ x^2 + y^2 }$$ не имеет предела при $\left( x, y \right) \to \left( 0, 0 \right)$ и, следовательно, не является непрерывной функцией в точке $\left( 0, 0 \right)$. Чтобы в этом убедиться, достаточно показать, что $\frac{ \partial f \left( x, 0 \right) }{ \partial x }$ не имеет предела при $x \to 0$.

Список литературы

Тест

Тест для проверки усвоения материала

Определение частной производной и её геометрический смысл

Определение. Пусть функция $$ f \left( x \right) = f \left( x_1, \dots, x_n \right) $$ определена в окрестности точки $ x^0 = \left( x_2^0, \dots, x_n^0 \right) $. Рассмотрим функцию одной переменной $$ \varphi \left( x_1 \right) = f \left( x_1, x_2^0, \dots, x_n^0 \right). $$ Функция $ \varphi \left( x_1 \right) $ может иметь производную в точке $ x_1^0 $. По определению такая производная называется частной производной $ \frac{ \partial f }{ \partial x_1 } \left( x^0 \right) $. Таким образом, $$ \frac{ \partial f }{ \partial x_1 } \left( x^0 \right) = \frac{ \partial f }{ \partial x_1 } \left( x_1^0, \dots, x_n^0 \right) = \\ = \lim\limits_{\Delta x_1 \to 0 } \frac{ f \left( x_1, x_2^0, \dots, x_n^0 \right) — f \left( x_1^0, \dots, x_n^0 \right) }{ \Delta x_1 }, $$ где $ \Delta x_1 = x_1 — x_1^0 $.
Аналогично определяются частные производные (первого порядка) $$ \frac{ \partial f }{ \partial x_i } \left( x_1^0, \dots, x_n^0 \right) , i = \overline{2, n}. $$ Употребляются и другие обозначения для частных производных первого порядка: $$ \frac{ \partial f }{ \partial x_i } \left( x^0 \right) = f_{x_i} \left( x^0 \right) = D_i f \left( x^0 \right) = \\ = {f’}_{x_i} \left( x^0 \right) = \frac{ \partial }{ \partial x_i } f \left( x^0 \right) = \frac{ \partial f \left( x^0 \right) }{ \partial x_i }. $$ Функция двух переменных может иметь в точке $ \left( x^0, y^0 \right) $ две частные производные первого порядка $$ \frac{ \partial f }{ \partial x } \left( x^0, y^0 \right), \frac{ \partial f }{ \partial y } \left( x^0, y^0 \right). $$ Для функции трех переменных — три частные производные первого порядка $$ \frac{ \partial f }{ \partial x } \left( x^0, y^0, z^0 \right), \frac{ \partial f }{ \partial y } \left( x^0, y^0, z^0 \right), \frac{ \partial f }{ \partial z } \left( x^0, y^0, z^0 \right). $$ Поскольку при вычслении частных производных все переменные, кроме одной, фиксируются, то техника вычисления частных производных такая же, как техника вычисления производных функции одной переменной.
Например, $$ \frac{ \partial }{ \partial x } \sqrt{x^2 + y^2} = \frac{ 1 }{ 2 \sqrt{x^2 + y^2} } \frac{ \partial }{ \partial x } \left( x^2 + y^2 \right) = \frac{ x }{ \sqrt{x^2 + y^2} }. $$

Геометрический смысл

kolomeiets20160630Рассмотрим функцию двух переменных $ z = f \left( x, y \right) $, определенную на множестве $ D \subset \mathbb{R}^2 $ и имеющую конечные частные производные $ \frac{ \partial z }{ \partial x } $ и $ \frac{ \partial z }{ \partial y } $ в точке $ M_0 \left( x_0, y_0 \right) $. Чтобы выяснить геометрический смысл частных производных, выполним следующие построения. В плоскости $ Oxy $ отметим точку $ M_0 $.
Затем нарисуем поверхность $ S $, являющуюся графиком функции $ z = f \left( x, y \right) $. Без ограничения общности будем полагать, что поверхность расположена над плоскостью $ Oxy $. Через точку $ M_0 $ проведем плоскость $ y = y_0 $ параллельную коорднатной плоскости $ Oxy $. В сечении поверхности $ S $ этой плоскостью получаем кривую $ \Gamma $. Уравнение этой кривой описывается функцией одной переменной $ z = f \left( x, y_0 \right) $. Так как в точке $ M_0 $ существует частная производная $ {f’}_x \left( x_0, y_0 \right) $, то она согласно геометрическому смыслу обычной производной функции одной переменной равна угловому коэффициенту касательной, проведенной в точке $ N \left( x_0, y_0, f \left( x_0, y_0 \right) \right) $ к кривой $ \Gamma $: $$ {f’}_x \left( x_0, y_0 \right) = \tan \alpha, $$ где $ \alpha $ — угол между касательной и положительным направлением оси $ Ox $. В этом состоит геометрический смысл частной производной $ {f’}_x \left( x_0, y_0 \right) $.

Список литературы

Тест

Тест для проверки усвоения материала